
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Data Engineering and Analytics

Handling Skew in Morsel-Driven
Hash-Joins

Parker Holland Timmins



SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Data Engineering and Analytics

Handling Skew in Morsel-Driven
Hash-Joins

Behandlung von Datenungleichverteilung
in parallelen Hash-Joins

Author: Parker Holland Timmins
Supervisor: Prof. Dr. Thomas Neumann
Advisor: Philipp Fent, M.Sc.
Advisor: Altan Birler, M.Sc.
Submission Date: November 15, 2023



I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, November 15, 2023 Parker Holland Timmins



Acknowledgments

Completing this thesis is only possible due to the support and guidance of a few
individuals, without whom this achievement would not have been possible.

I am very grateful for the ideas and insight provided by my advisor, Altan Birler.
These have been invaluable. Despite the short time we have known each other, I have
learned much from Altan.

My thanks to my advisor, Philipp Fent, extend beyond this thesis. He has been
a mentor in my education in database systems. I cannot thank him enough for the
guidance and knowledge he has given me over the past year and a half. With my
studies coming to an end, I will miss our Thursday morning meetings.

I quite literally could not have completed my master’s degree without the help of
my wife, Eloisa. Without her encouragement, I would not have thought to start my
studies and certainly would not have finished them. It is her support that has enabled
the opportunity I’ve had to study database systems in Munich.



Abstract

Hash Joins are the dominant join technique in modern database systems; they are highly
efficient and perform well on a wide range of data. Unfortunately, their performance
can decline in the presence of skew.

Hash joins often use separately chained collision lists, which can become excessively
long when build-side keys are highly skewed. During the probe stage, iterating
through long collision lists results in poor cache performance. If the probe relation is
also skewed, repeated linked list iteration amplifies this behavior.

Morsel-driven parallelism is an efficient method to achieve high concurrency in
modern relational database systems. The combination of Morsel-driven parallelism
with hash joins using chained collision lists causes a second problem — low thread
utilization. When the build relation is highly skewed, one morsel may produce far
more results than another morsel. If the imbalance between morsels is high enough,
the thread processing a long-running morsel will finish long after other threads. The
query is delayed until the slow thread finishes and resources are utilized poorly.

The issues of poor cache performance and low thread utilization can drastically
reduce the performance of hash joins on skewed data. To rectify these issues, we intro-
duce two techniques: Node Compaction and Sub-morsel Stealing. Node Compaction
gathers skewed tuples and copies them into dense arrays of tuples, improving cache
utilization during probe. Sub-morsel Stealing allows one thread to help another thread
join skewed morsels, improving thread utilization.

Using these techniques, we improve the execution time of queries on many skewed
workloads. On a large subset of the Cardinality Estimation benchmark, these methods
achieve a mean speedup of 49%, with a maximum speedup of over 87x. At the same
time, we show that these techniques do not cause a significant reduction in performance
on non-skewed workloads, such as TPC-H.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Problem Setting 6
2.1 Hash Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Umbra’s Hash Join . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Interpreted / Pull-based . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Compiled / Push-based . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Volcano-style Parallelism . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Morsel-Driven Parallelism . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The Problem with Skewed Data . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Poor Cache Performance . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Poor Thread Utilization . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Prevalence of Skewed Queries . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Uniform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Key / Foreign Key Joins . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Foreign Key / Foreign Key Joins . . . . . . . . . . . . . . . . . . . 18
2.5.4 Graph Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Works 20
3.1 Hash Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Skew-Optimized Hash Joins . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Skew Recognition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Linked List Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Improving Cache Performance 24
4.1 Linked Lists for Collision Resolution . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Effects of Skew on Collision Lists . . . . . . . . . . . . . . . . . . 24

v



Contents

4.2 Improving Cache Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Naive Collision Array . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Array Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Array Node Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Restricting Compaction to Skewed Keys . . . . . . . . . . . . . . 28
4.3.2 Local Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 Insertion Algorithm Example . . . . . . . . . . . . . . . . . . . . . 32

5 Improving Thread Utilization 35
5.1 Morsel Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Defining Sub-Morsels . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Picking Sub-Morsels . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Running Stolen Sub-Morsels . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Probing Sub-Morsels . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Selecting Join Algorithms 47
6.1 Compile-time vs. Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Compile-time techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Distinct Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Self Join Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.3 Effectiveness of Compile-time Sketches . . . . . . . . . . . . . . . 50

6.3 Probabilistic Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Evaluation 53
7.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 System for Cardinality Estimation Benchmark . . . . . . . . . . . 53
7.1.2 System for other Benchmarks . . . . . . . . . . . . . . . . . . . . . 53

7.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.1 Zipfian Micro-benchmarks . . . . . . . . . . . . . . . . . . . . . . 54
7.2.2 TPC-H & JCC Benchmarks . . . . . . . . . . . . . . . . . . . . . . 56
7.2.3 Cardinality Estimation Benchmark . . . . . . . . . . . . . . . . . . 60

8 Discussion 65

9 Conclusion 68

List of Figures 70

vi



Contents

List of Tables 72

Bibliography 73

vii



1 Introduction

Relational database systems provide an interface for manipulating and analyzing
arbitrary tabular data. A key feature of relational database systems, as described by
Codd [8], is that the internal representation of data and means of manipulation is
hidden from users.

In other words, when given arbitrary data and queries, a database system should
do the right thing. A user should not have to think carefully about how to craft a
query so that it runs efficiently — the database should figure this out. Of course, some
queries have inherently high asymptotic complexities. A cross-join of two relations of
cardinality n must produce n2 output tuples; thus, its execution time must be quadratic.
Nevertheless, a database system should attempt to run such a query within a reasonable
time.

With this in mind, we look at a scenario where database systems frequently fail
to produce reasonable execution times. When relations with highly skewed keys are
joined with a hash join, queries can be slow. There is a great deal of literature on this
topic [30, 23, 25]. Unfortunately, the existing literature does not solve the problem
for many modern in-memory systems. Specifically, hash joins featuring chaining for
collision resolution are susceptible to poor cache utilization in the presence of skewed
data. Additionally, such hash joins can exhibit poor thread utilization when combined
with morsel-driven parallelism.

We look at a few example joins to understand how these issues manifest. We start
with a simple description of a hash join consisting of just two steps:

1. Build: Insert the tuples from one relation into a hash table by their join keys.

2. Probe: For each tuple in the second relation, output all matching tuples in the
hash table.

We can see an illustration of a hash join in Figure 1.1. At the top left of this figure
is the first relation, known as the build relation. Different colors represent the tuple
keys. To the right of this, we see a hash table with the tuples of the build relation
inserted by their key. This hash table uses separate chaining, storing values in a linked
list accessible from the hash directory. All tuples with matching keys are accessible
through the same linked list in the hash table.

1



1 Introduction

Build Relation Build Hash Table

Probe Relation Probe Morsels Output/Morsel

Figure 1.1: Illustration of a join between two relations with uniformly distributed keys.
The output size is small and evenly distributed between morsels.

Below this, we see the second relation, known as the probe relation. Before perform-
ing the probe step of the above algorithm, the probe relation is split into units of work,
known as morsels. A separate thread can process each morsel — a necessity as modern
systems have many execution contexts. Processing each morsel involves looking up
each tuple’s key in the hash table. This requires hashing the key, accessing the index of
the hash value in the hash directory, and iterating through the linked list of tuples at
that index. Finally, the hash join outputs every matching pair of tuples from the build
and probe relations. Pictured to the lower right are the number of output pairs per
morsel. Each sliver represents a pair of build and probe tuples, with the color of the
sliver being that of the pair’s keys.

There are five output pairs for this join, which are reasonably evenly spread between
the probe morsels — having 2, 2, and 1 outputs, respectively. Since the key values in
the build and probe relations are unique, this is analogous to a join on primary keys.
The result is a relatively small output, equal to the size of the smaller relation. Similar
behavior would be seen if the keys were not unique but were uniformly distributed.
There would be duplicate keys in this case, but the multiplicities would be low, resulting
in a similar output size.

We now move on to Figure 1.2, where we join two highly skewed relations. We will
see that the change in key frequency distribution drastically affects the output size and
number of outputs per morsel.

This figure is similar to the previous one, with the difference that both relations are

2



1 Introduction

Build Relation Build Hash Table

Probe Relation Probe Morsels Output/Morsel

Figure 1.2: Illustration of a join between highly skewed build and probe relations. Due
to the skew, the output size is large, though still evenly distributed between
morsels.

now highly skewed, containing only green keys. In the lower right, we see that the
skewed relations significantly increase the number of output tuples. Specifically, every
tuple in the probe relation matches every tuple in the build relation, resulting in 30
output pairs.

Despite the same cardinality input relations, this join produces a much larger output
than that of Figure 1.1. It is reasonable to assume that this query should take pro-
portionally longer to complete. However, we should examine this assumption more
critically. Consider the specific work being done during the probe stage of a hash join.
For each tuple of the probe relation, the collision list at the appropriate offset in the
directory is traversed. Each collision list node traversed requires a data access. Ignoring
hash collisions, the number of accessed nodes equals the output size. Again, this may
give the false impression that little improvement can be made since we cannot inspect
fewer tuples than the output size.

However, all data accesses are not equal. There is a vast difference between accessing
a tuple held in main memory versus one in the L1 cache. Unfortunately, linked lists
have poor cache performance and poor space utilization. If the relations are large, many
tuples read from hash table collision lists will be uncached, requiring main memory
accesses. The large output size of skewed joins equates to a high number of main
memory reads, resulting in high execution times. But what if tuples could be read
from caches rather than from memory? This could result in a drastic performance

3



1 Introduction

Build Relation Build Hash Table

Probe Relation Probe Morsels Output/Morsel

Figure 1.3: Illustration of a join between skewed build relation and low-skew probe
relation. The output is not well distributed, with one morsel containing
most of the results.

improvement. Thankfully, increasing the cache hit rate is relatively straightforward. By
reorganizing tuples to be closer to each other in memory, we can significantly increase
the amount of cached tuples, thus reducing expensive memory accesses. Showing how
this tuple reorganization can be done to improve cache utility is the first contribution
of this thesis.

Before moving on from the discussion of cache performance, it is worth taking a
moment to consider why this was not a problem in the uniform case in Figure 1.1.
In the skewed case, much of the time is spent probing the hash table rather than
building the hash table. Whereas, in the uniform case, since the output is relatively
small, less time will be spent probing the hash table. Thus, proportionally, more time
will be spent building the hash table. While the probe stage dominates performance
for skewed joins, the build and probe stages are of similar importance for uniform
joins. Iterating collision lists when joining uniform relations does have poor cache
performance. However, this is a worthwhile tradeoff, as separately chained hash tables
have fast build performance. Throughout the rest of this thesis, we will see that there is
usually a tradeoff between build and probe performance. The techniques we will use
to improve cache performance will increase build times while drastically improving
probe times for the right workload.

We now look at the second problem mentioned above: low thread utilization.
In Figure 1.3, we see a skewed relation joined with a more uniform relation. The

4



1 Introduction

output size is 10, much smaller than the previous example, but the work is imbalanced
in this case. Because the last probe morsel matches most of the build tuples while
the other morsels each match one tuple, the last morsel requires more work. Since
a separate thread is processing each morsel, this will result in one thread working
for longer than the other two. The query can only be completed once the slowest
worker thread is done. Though the system may be able to use the other threads to
process a separate query in the meantime, they will likely sit idle instead. If the work
could instead be shared more evenly between the threads, as in the other examples,
all threads would finish sooner. A common technique for distributing work between
threads is work-stealing, where under-worked threads may steal work to be done from
overworked threads. Unfortunately, morsels are themselves the units of work that are
stolen in morsel-driven systems. What is needed is a means to steal a "sub-morsel" of
work from another thread. This is the second contribution of this thesis: we show how
such Sub-morsel Stealing can be used during the probe stage of hash joins to reduce
work imbalance between threads.

The remainder of this thesis describes our attempt at handling skew in morsel-driven
hash joins. In Chapter 2, we provide the necessary background, describing hash-join
and morsel-driven parallelism in detail. We then look at the previous work on this topic
in Chapter 3. In Chapter 4, we describe Node Compaction, our method for improving
cache utilization in skewed joins. Following this, we present Sub-morsel Stealing and
show how it improves thread utilization in Chapter 5. In Chapter 6, we show how to
identify skewed workloads. We then evaluate our techniques in Chapter 7. Finally, we
discuss the results and reach conclusions in Chapter 8 and Chapter 9, respectively.

5



2 Problem Setting

In this section, we cover preliminary information needed to understand the optimiza-
tions proposed by this thesis. We start by describing hash joins in general and that of
the Umbra database system in particular. Next, we look at Umbra’s execution model, a
pipelined, code-generating, push-based approach to processing an operator tree. This
leads to a discussion of how query execution can be parallelized, focusing on how
morsel-driven parallelism allows high thread utilization. Lastly, we will see how a
system implementing the above features can fail to perform well on highly skewed
data.

2.1 Hash Joins

Databases tend to support multiple join implementations, but arguably the most
important is the hash join; they are efficient and perform well on many workloads
[3]. There is significant literature on optimizing hash joins and hash tables [24, 4,
17]. Chapter 1 introduced a simple description of hash join operators. This section
investigates a more realistic hash join, such as that used by a state-of-the-art database
system. We will focus on the specific implementation used in the Umbra database
system.

2.1.1 Umbra’s Hash Join

The Umbra hash join has previously been described in detail [4, 17]. We will now cover
the parts of this implementation relevant to this thesis.

Umbra’s hash join uses a single global hash table. The table consists of an array of
pointers known as the hash directory. It uses separate chaining rather than an open
addressing scheme for collision resolution. Thus, rather than storing the tuples directly
in the hash table, they are stored in linked lists accessible from the hash directory
pointers. The hash table in the upper right of Figure 1.1 shows the general structure of
a separate chaining hash table.

As opposed to the simple two-step hash join algorithm described in Chapter 1,
Umbra uses three distinct steps, known respectively as materialize, build, and probe.
We describe the steps in detail below.

6



2 Problem Setting

Materialize Stage

The build relation is evaluated during the materialize stage, and all tuples are spooled
into memory. Each tuple is padded with additional space to store a pointer. The
pointer will be used during the build stage when inserting the tuple into the hash table.
After processing the entire build side, we know the cardinality of the build relation.
A hash directory can then be allocated; it is given a size slightly larger than the build
cardinality to minimize hash collisions.

Build Stage

In the second stage, we iterate over the spooled tuples, inserting them in the hash
table. This involves converting a tuple’s hash value into a hash directory index and
then inserting the tuple at the head of the collision list at the specified index. Insertion
updates two pointers — setting the hash directory pointer to the newly inserted tuple,
and setting the next pointer of the inserted tuple to the tuple at the current head of
the collision list if one exists. Importantly, setting the pointer in the hash directory is
done with an atomic exchange to guarantee that tuples inserted concurrently by other
threads are not lost.

In addition to the pointer, each hash directory slot contains a 16-bit bloom filter of
the keys held in the hash bucket. Any probe key which does not match the bloom filter
can avoid traversing the collision list when looking for matches.

The materialize and build stages of Umbra’s hash join can be combined if the size
of the build side is known or can be estimated before materialization. This allows the
hash table to be allocated before materialization, letting each tuple be spooled into
memory and inserted into the hash table immediately. The benefit of this approach is
that the data only needs to be traversed once.

Probe Stage

The final stage of the hash join is the probe stage. In this stage, the probe side of
the join is processed, and for each tuple, we search for matches within the hash table.
This involves finding the collision list associated with the index of the hash value and
traversing the collision list. Since the list could contain tuples with colliding hash
values, each tuple must be tested for equality with the probe key. Each matching pair
of tuples is emitted to the next operator in the query tree.

The following section will discuss database system execution models, particularly
Umbra’s. With this additional context, the hash join algorithm’s three stages will
become more clear.

7



2 Problem Setting

2.2 Execution Model

After a query is parsed into a tree of operators, the tree is optimized and evaluated. We
ignore the optimization steps and focus on evaluation. Evaluation consists of producing
the stream of tuples, the query’s output.

There are several approaches to evaluation that can be organized across a number
of axes — interpreted vs compiled, push vs pull-based, and tuple-at-at-time vs. block-
based. Some of these attributes tend to be used together; for example, interpreted
systems are usually pull-based. Nevertheless, these concerns are largely orthogonal,
and there are systems that implement most of the possible combinations. We describe
some standard evaluation models below.

2.2.1 Interpreted / Pull-based

The traditional approach to query execution is known as the iterator model or Volcano
model [14]. This model is interpreted, pull-based, and tuple-at-a-time. In such a system,
each operator implements a next() function, which emits a single tuple produced by
the operator. Within the next() function, each operator calls the next() functions of
its child operators in the query tree and consumes their tuples. Execution of the entire
query is performed by repeatedly calling the next() method on the root of the operator
tree. This approach is pull-based, as tuples are pulled from the bottom of the operator
tree to the top.

The iterator model allows for elegant code but suffers from poor runtime performance.
Specifically, iterator-based systems require many instructions per tuple produced [21].
A primary cause of this inefficiency is the polymorphism used to implement the iterator
interface. Dynamic binding must be used to choose the specific next() method for
a given operator. Worse, the resolution of the binding must happen for every tuple
produced by every operator in the operator tree.

Block-Based Iterator Model

An optimization to the iterator model is to change from tuple-at-at-time processing to
block-based processing. Such a system works similarly to the standard iterator model
but passes chunks of tuples between operators rather than single tuples. This reduces
the number of instructions per tuple, increasing performance but also code complexity.

Another downside of this approach is that the operators are no longer pipelined. In
the standard iterator approach, each operator works in turn on a single tuple as it is
pulled up through the tree. This allows the currently processed tuple to remain in the
cache. Since the block-based model passed around a chunk of tuples, these tuples must

8



2 Problem Setting

be materialized. Depending on the size of the block, this results in worse cache locality.
This leads us to compiled push-based systems which reduce evaluation overhead

while keeping tuples pipelined.

2.2.2 Compiled / Push-based

In a compiled system, the query tree is used to generate machine code rather than
being directly evaluated. For example, Umbra converts a query tree to LLVM code,
which is compiled and executed. This compilation step removes the dynamic binding
of the iterator model, reducing the number of instructions needed per tuple.

Evaluation in such a system amounts to running compiled functions with the base
relations of a query as inputs. These functions directly loop over the tuples in the
base relations. In this model, processing starts conceptually at the base relations and
progresses to the top of the operator tree. Thus, this approach is classified as push-based
rather than pull-based.

For example, Umbra’s hash join algorithm described in Section 2.1.1 is conceptually
push-based, as it describes iterating over base relations and pushing tuples up the
operator tree. The build relation’s tuples are pushed up into the join operator’s hash
table, and the probe tuples are pushed through the hash table to emit matches to the
parent operator.

Pipelines

As mentioned previously, the iterator model benefits from being pipelined This means
that a tuple can be passed between adjacent operators in the tree and used immediately.
Such a design requires minimal copying and improves cache-locality.

The compiled approach reduces per-tuple overhead while still allowing effective
pipelining. The query tree is compiled directly into loops over base relations. With
each such loop, only the current tuple needs to be materialized, thus reducing copying
and maintaining high cache locality. Of course, most queries will use multiple base
relations and separate loops will be needed to iterate over each relation. In a compiled
system, these loops are known as pipelines.

More generally, a pipeline is a contiguous piece of the operator tree that does not
require tuples to be materialized. Each pipeline can be compiled into a single loop
over a relation, with the work for every operator in the pipeline being a part of the
loop body. This leads us to the notion of a pipeline-breaker. Sometimes, operators
must materialize their inputs entirely. For example, the build relation of a join must be
materialized entirely before proceeding with the probe side. We say that the hash join

9



2 Problem Setting

operator is a pipeline-breaker for its build side, as the build side pipeline ends when
its tuples are materialized in the hash join.

On the other hand, a hash join is not a pipeline breaker for its probe side. Tuples
can be pushed from a probe side query through the hash join and then into the parent
operators in the operator tree. Since the probe tuples are not materialized, they can
stay in the cache.

In the following section, we look at the approaches database systems use to achieve
high concurrency.

2.3 Parallelism

The above discussion has avoided parallelism, but this must be addressed as modern
computers include dozens of discrete cores. Taking advantage of this parallelism
is required in any system attempting to achieve high performance. The dominant
technique to achieve parallelism in relational database systems is the use of Volcano-
style parallelism [14].

2.3.1 Volcano-style Parallelism

The iterator execution model is also known as the Volcano model, and its method
of achieving parallelism is Volcano-style parallelism. In a system with Volcano-style
parallelism, operators are not multithreaded. Instead, a special exchange operator
separates a tuple stream into multiple streams. Multiple, identical, single-threaded
operators then process each such tuple stream. After the duplicated operators finish,
the separated tuple streams are recombined by another exchange operator.

The primary benefit of such a system is its simplicity. Since each standard operator
is single-threaded, a database system may be upgraded to handle Volcano-style par-
allelism with minimal changes to the relational operators. Most of the complicated
multithread logic is encapsulated within the exchange operators.

Unfortunately, this simplicity of implementation comes at the cost of reduced perfor-
mance; Volcano-style systems have two notable issues. First, as Volcano-style parallelism
is often used in systems with interpreted, tuple-at-a-time execution, it shares the perfor-
mance issues of such systems. The second issue with Volcano-style parallelism is that
the level of parallelism for each operator is hard-coded within the operator tree. This is
because there must be a duplicate operator node for each thread processing the operator.
This reduces flexibility in the system, as threads cannot be reassigned between different
queries or parts of queries. Additionally, since the work is evenly divided between
duplicated operators, differences in processing speed can cause work imbalance. If
one of the duplicated operators finishes faster than its siblings, the associated thread

10



2 Problem Setting

will sit idle until all siblings have finished. This issue is particularly problematic in the
presence of data skew.

These issues lead us to a more modern approach to multithreaded query execution —
morsel-driven parallelism.

2.3.2 Morsel-Driven Parallelism

In a Morsel-driven system, the input tuples for each pipeline are broken up into chunks
known as morsels; for example, each morsel might contain 10,000 tuples [17]. When
the system is ready to execute a given pipeline, it decides how many hardware threads
should be used. It then instantiates the threads and only releases them once the pipeline
is completed. The number of threads used will be no more than the hardware thread
count. Thus, there will be few context switches, and the threads can be considered
hardware execution contexts. Each thread then loops, picking the next available morsel
and pushing each tuple in the morsel through the pipeline. The threads run this loop
until all morsels are exhausted.

Usually, threads consume morsels from a shared pool. For example, when processing
a base relation, threads simply claim ranges of tuples within the relation. In other
situations, threads steal morsels from each other. This is the case when materialized
tuples are inserted in a hash table. It is preferable for the same thread that materialized
a tuple to insert it in the hash table, as the tuple may be in the thread’s cache. For this
reason, after materialization, each thread picks morsels to insert out of the tuples that
it materialized. However, if a thread finishes its morsels before others have finished
theirs, it can steal morsels from the slower threads. Thus, morsel-driven systems are a
form of work-stealing.

Morsel-driven systems have significant performance benefits. The use of work-
stealing allows work to be evenly balanced between threads. This stops slow threads
from stalling computations and allows the system as a whole to run faster. Additionally,
by using fewer threads than hardware execution contexts, morsel-driven systems do
not waste time context switching. They also allow for significant flexibility in thread
allocation. Such a system could reallocate threads during a single pipeline execution,
as any remaining threads can process the remaining morsels. This is an improvement
over Volcano-style parallelism, which directly fixes the number of required threads in
the operator, reducing flexibility.

Unfortunately, there is a cost to using morsel-driven parallelism — since operators
are aware of parallelism, each operator must deal with parallelism explicitly. This adds
significant code complexity, as many operations and data structures must be made
thread-safe. For example, in the hash join operator, the hash table’s insert function
must be thread-safe. In Umbra, this is implemented by updating hash table pointers

11



2 Problem Setting

with atomic compare and swap functions. Nevertheless, this is a worthwhile tradeoff,
as morsel-driven systems can achieve high thread utilization.

Morsel Size

One aspect of morsel-driven systems worth discussing further is the morsel size. Since
multiple threads call the morsel allocation code, it must be thread-safe, and frequent
calls can lead to unwanted contention. Using larger morsels can result in less time
being spent on the overhead of allocating morsels. But larger morsels can also cause
work imbalance, leading to lower thread utilization. One solution is adaptive morsel
sizing as described in [29]. This design starts with a small morsel and then increases
the morsel size based on the time required to complete previous morsels. Though this
method works well, we will see that it only solves some work imbalance issues caused
by skewed data. The following section will describe the issues skewed relations can
cause in hash joins, especially in morsel-driven systems.

2.4 The Problem with Skewed Data

Despite its dominance amongst join algorithms, hash joins are subject to poor perfor-
mance on highly skewed relations. In particular, hash joins using separate chaining
hash tables can result in poor cache utilization. Additionally, combining hash joins and
morsel-driven parallelism can result in poor thread utilization. In this section, we look
at both of these problems in detail.

2.4.1 Poor Cache Performance

There are some joins which, by their very nature, take a great deal of time. No
optimization can make a cross-join on relations of size n have an asymptotic complexity
smaller than O(n2), as the final output size has a cardinality of n2. Unfortunately, very
skewed relations can have similar behavior. Consider the inner join of a relation with
only one unique key value with itself; the output is identical to that of a cross-join.

Assume we perform this join on a relation with 1, 000, 000 tuples. The relation will
first be inserted into the hash table. As only one key value exists, every tuple will be
in a single linked list. Then, during the probe stage, every tuple in the relation will
traverse this linked list.

We can compute the time it takes to complete the join described above, using an
estimate of memory latency. A decent estimate for the latency of a memory reference
is 100ns [10]. We ignore the additional time required to read data, focusing only on
latency; we also assume the system is single-threaded. If the tuples are large, very

12



2 Problem Setting

few may be cached. If we assume that no tuples are cached and every tuple must be
accessed with a separate main memory reference, completing the join will take over 27
hours.

Of course, this is an extreme example; it is unrealistic that all tuple nodes are un-
cached and require a memory access. However, adjacent linked list nodes are likely not
adjacent in memory. In this case, they cannot be read sequentially from memory and
are likely not in the same cache line.

This leads to the obvious question: how can tuples in collision lists be read from the
cache rather than from main memory? The answer is likewise obvious: the tuples of a
collision list should be stored in an array rather than a linked list. This will achieve
high cache utilization as adjacent tuples share the same cache line.

Cache misses on Zipf skewed data

It is helpful to see actual data rather than the idealized example above. In Figure 2.1,
we compare the execution time, cache miss rate, and result sizes of various joins. The
keys of the build and probe relations are distributed with a Zipf distribution. The Zipf
distribution is useful for simulating skewed real-world distributions, as described in
Gray et al. [15]. We vary the build relation Zipf Z parameter between 0 and 4, while
the probe relation Z takes values of 0, 0.25, and 0.5. A Z of 0 is equivalent to a uniform
distribution. Both relations have 1e7 tuples, each consisting of two 64-bit integers. All
three plots used log scales, as metric values become very large at high skew.

The plots show a strong relationship between the result size of a join and the L1
cache-miss rate. Furthermore, there is a correlation between these values and the total
execution time of the query. This implies that the cache miss rate has a significant effect
on the execution time of a query. Separating the cache miss rate from the result size of
a join will lead to improvements in execution time. We will revisit these plots later in
the thesis and show that the techniques provided do indeed change the relationship
between these three metrics.

2.4.2 Poor Thread Utilization

In Figure 1.3, we saw how skewed data can cause an imbalance in work between
threads in a hash join. We now look deeper at this problem, starting with a discussion
of hash tables.

As previously mentioned, to access a value in a hash table, we convert the key to a
hash value and then access the hash directory at the index specified by the hash value.
Ideally, we would access the wanted item directly from this spot in the hash table.
Unfortunately, this is not always possible. Since multiple keys can hash to the same

13



2 Problem Setting

1e7

1e8

1e9

1e10

0 1 2 3 4

Build Skew (z)

R
es
u
lt
S
iz
e

Probe
Skew (z)

0

0.25

0.5

(a) Result size

1e7

1e8

1e9

0 1 2 3 4

Build Skew (z)

L
1
ca
ch
e
m
is
se
s Probe

Skew (z)

0

0.25

0.5

(b) Cache miss rate

0.1

1.0

10.0

0 1 2 3 4

Build Skew (z)

T
im

e
(s
)

Probe
Skew (z)

0

0.25

0.5

(c) Execution Time

Figure 2.1: Evaluation of baseline Umbra hash join on Zipf distributed build and probe
relations.

offset in the hash directory, hash tables need a mechanism for accessing multiple items
from the same offset. Open addressing hash tables handle this by storing colliding
keys at other spots in the hash directory. A separate chaining hash table handles this
by storing all values in a linked list accessible from the hash directory; values are not
stored in the hash directory.

Traditionally, the keys of hash tables are unique — there is only one key-value pair
for any given key in the hash table. However, the keys used to join database relations
frequently have duplicates. For this reason, hash tables in hash joins allow the keys
to be multi-sets. Moreover, the method used to handle hash collisions can be used
to store duplicate keys. Thus, in a separate chaining hash table, key-value pairs with
the same key will be stored in the same linked list. This works but can result in long
collision lists. With a good hash function and a suitably sized hash directory, the chance
of having many collisions in a slot is low. But, since keys in a relation can have an
arbitrary number of duplicates, the length of the associated collision list can become
arbitrarily long. This is not inherently problematic, but depending on the distribution
of the probe relation, can cause an imbalance in work per morsel.

14



2 Problem Setting

Morsel Work Imbalance

In Figure 1.2, we saw a join between two very skewed relations. Because the build
relation has all identical keys, every tuple is stored in a single collision list in the hash
table. Likewise, the probe keys were also all the same key. Thus, every probe key was
required to traverse the single long collision list in the hash table. Since every probe
key traverses the same collision list, processing every probe key requires the same
amount of work. If we assume each morsel contains the same number of tuples, as
in the example, each morsel will require the same amount of work to process. If the
morsels are evenly distributed between threads, the amount of work per thread will be
approximately equal. Thus, all threads will finish in a similar amount of time, and the
query will have good thread utilization.

Now consider the situation in Figure 1.3. In this case, the build side is skewed, but
the probe side is not. All the probe keys that match the tuples in the hash table are
within a single probe morsel. Each tuple in this morsel will need to traverse the long
collision chain. On the other hand, every other morsel will need to do minimal work.
For each tuple in the other morsels, the appropriate slot in the hash directory will be
found to be empty or containing a short collision list. Because most of the tuples are
emitted by a single morsel, this morsel will take much longer to finish than the other
morsels. The thread processing this morsel will take longer than other threads, and the
query will only be completed once the slow morsel has been processed.

Effects of Probe Morsel Distribution

It is helpful to consider distributions of probe keys that can cause this work imbalance.
As in the latter case above, to have a work imbalance, a small number of probe morsels
must contain most or all of the high multiplicity build keys.

Consider a highly skewed build relation and a probe relation with unique keys.
Assume a few keys account for the vast majority of build relation keys. If these keys
appear in the probe relation and are in the same morsel, there will be an imbalance.
The morsel containing these keys must traverse at least one long collision list, while
most other morsels will find very few matches. On the other hand, if the few probe
keys that will find many matches are spread throughout the probe morsels, there may
not be an imbalance.

We can see an example of these situations in Figure 2.2b. On the left side of this
figure, titled Probe shuffled, we plot execution time and thread utilization for the same
benchmark shown in Figure 2.1. The right side of this figure, titled Probe clustered,
shows queries with a slightly different probe relation. This relation is loaded into the
database from a CSV sorted on the key value. Though the database makes no guarantee

15



2 Problem Setting

of maintaining the order of the loaded CSV, in practice, tuples are clustered similarly in
the base relation as they were in the associated CSV. Loading from a sorted CSV puts
the keys that match the highly skewed build keys into a single morsel. On the left half
of the figure, the CSV used for loading the probe relation was unordered. Thus, the
few probe keys that emit the most matches are spread throughout the probe morsels.

Several parts of these plots are worth noting. For the clustered probe join, the
execution time increases rapidly at a Z value of 0.5. A drop in thread utilization
accompanies this. The rapid drop-off is due to two factors. At a Z value of 0.5, the
number of duplicates in the build relation increases significantly, resulting in a few
long collision lists. At this point, the probe keys that produce most matches now fit
into a single morsel.

Adaptive Morsel Sizing

The Umbra database system uses adaptive morsel sizing [29]. This optimization helps
mitigate some problems described above by keeping morsel sizes small when each
morsel performs more work. Unfortunately, this does not solve the problem as a whole,
as small morsels can still require an arbitrarily large amount of processing time. This is
because the relation is split into morsels at the base of an execution pipeline and then
processed by all code in the pipeline. Since the pipeline could contain joins, each tuple
in the morsel could transform into many tuples higher in the pipeline.

The fundamental issue is that once a morsel is allocated to a thread, it cannot be
subdivided. This is the primary contribution of this thesis — a means for morsel-driven
systems to split morsels when they are found to be too large. Though we do not discuss
adaptive morsel sizing in more detail, it is closely related to the work of this thesis. An
interesting area for the future is to investigate the interaction between adaptive morsel
sizing and the techniques of this thesis.

2.5 Prevalence of Skewed Queries

In Section 2.4, we showed experimentally that it is possible to design data and queries
that cause the Umbra to exhibit the issues of high cache miss rate and low thread
utilization. However, these data and queries are synthetic. It is reasonable to question
whether there are more realistic queries that cause the same issues. This section shows
queries on a well-known dataset that exhibit these issues.

16



2 Problem Setting

Probe shuffled Probe clustered

0 1 2 3 4 0 1 2 3 4

0.1

1.0

10.0

Build Skew (z)

T
im

e
(s
)

Probe
Skew (z)

0

0.25

0.5

(a) Execution time

Probe shuffled Probe clustered

0 1 2 3 4 0 1 2 3 4

25

50

75

100

Build Skew (z)

%
T
h
re
ad

U
ti
li
za
ti
on

Probe
Skew (z)

0

0.25

0.5

(b) Thread Utilization as measured by kernel

Figure 2.2: Comparison of join with probe relation clustered by key versus randomly
shuffled by key.

2.5.1 Uniform Data

The well-known database benchmark TPC-H uses a uniform data generation process.
Due to uniformly distributed keys, skew does not pose a significant problem for
queries on this dataset. The JCC benchmark is a skewed dataset based on the TPC-H
benchmark [6]. It uses a skewed data generation process and adds correlated skew
between columns. In addition to skewed data, the JCC benchmark includes queries
that follow the template of TPC-H queries while using skewed attributes.

17



2 Problem Setting

2.5.2 Key / Foreign Key Joins

There is another reason the TPC-H dataset and queries do not exhibit the issues
described by this thesis. The issues with skewed data described in this thesis are more
prevalent for build skew as this causes long collision chains. Database systems tend to
choose the smaller of the two joined relations as the build side, so fewer tuples need
to be materialized. A typical pattern for combining two relations involves joining a
key in one relation with a foreign key in the other. Since keys must be unique, only
the foreign key attribute has the potential to exhibit skew. Thus, in the join of a key
and foreign key, to have a skewed build relation, the foreign key relation must be the
smaller of the two relations. But this will never be true if every key value appears in
the foreign key attribute. Even if this is not the case, the fact that a foreign key may
appear multiple times means that the foreign key relation is likely the larger of the two.
In the case of TPC-H, for every key/foreign key relationship, the relation containing
the key is the smaller of the two.

It should be noted, of course, that relations joined in database systems are not
necessarily base relations. They could be the results of arbitrary queries, for example,
filtering predicates applied to a base relation. This provides a means for a key/foreign
key join to occur where the foreign key appears in the smaller of the two relations and
is thus on the build side of the join. Nevertheless, key/foreign key joins are less likely
to exhibit build side skew than other join patterns.

2.5.3 Foreign Key / Foreign Key Joins

We turn now to joins between two foreign key columns. Because this allows duplicates
on both sides of the join, this can result in inferior cache performance, as previously
described. The duplicates in the build relation result in long collision lists and the
duplicates in the probe relation cause these collision lists to be traversed repeatedly.
But do such joins occur in practice?

We provide an example query in Listing 2.1, using the JCC benchmark dataset. It
finds customers who purchased the same part as a given customer. Then, parts that a
given customer has not purchased but that similar customers have can be recommended
to the customer in question.

Unlike the key/foreign key joins described above, the equi-join key partkey is not a
key in the joined relation. We ran this query three times on the baseline Umbra and a
test Umbra with the methods developed in this thesis. The dataset was JCC at scale
factor 1, and the system used is described in Section 7.1.1. The baseline version of
Umbra completes this query in a minimum of 379 seconds and has 4.9e12 L1 cache
misses for all three runs. Meanwhile, the version using the techniques described in this

18



2 Problem Setting

thesis requires a minimum of 21 seconds, with a total of 5.5e10 L1 cache misses for
all three runs. It is clear that the baseline version has poor cache performance on this
query and that the methods in this thesis provide a way to mitigate this issue.

Listing 2.1: Query to find similar customers.
1 with purchases(custkey, partkey) as (
2 select c_custkey, l_partkey
3 from customer c, orders o, lineitem l
4 where c_custkey = o_custkey
5 and o_orderkey = l_orderkey
6 )
7 select count(*)
8 from purchases p1, purchases p2
9 where p1.custkey != p2.custkey

10 and p1.partkey = p2.partkey

2.5.4 Graph Datasets

It is worth noting that the above query joins the purchases relation with itself. Though
sensible in the above query, this is perhaps not a common pattern. However, there is a
domain where such queries are common — graph datasets.

In this domain, the data consists of graph vertices and edges. These can be modeled
in a relational setting with an edge relation consisting of source and target columns.
The vertices may not require a separate relation, existing implicitly as the source and
target columns within the edge relation.

Since there is only the edge relation, all queries containing joins consist of joining
the edge relation with itself. A simple example is a query that finds the neighbors of
the neighbors of a given vertex. This consists of a join where the equality predicate
matches the target of one edge relation with the source of another edge relation. We
will see specific graph datasets and queries in Section 7.2.3.

In the next section, we review previous works related to the topics discussed in this
thesis.

19



3 Related Works

This thesis touches on several topics, including hash join algorithms, skew handling in
hash joins, skew recognition techniques, and linked list optimizations. Each of these
areas has significant existing literature; we cover these related works in this section.

3.1 Hash Joins

The Grace hash join described how to perform a hash join on a multiprocess system
when the build relation size exceeds memory [16]. It used two partition phases, once to
assign tuples to processors and a second to select subsets of tuples from both relations,
which are small enough to join in memory. The hybrid hash join optimized the Grace
method by immediately building an in-memory hash table with the first bucket rather
than first spooling it to disk as in the Grace hash join [26]. The partitioning technique
used by both the Grace and Hybrid hash joins creates more partitions than there are
processors. This allows multiple partitions to be distributed to a single processor,
reducing the load imbalance caused by skewed keys. The same technique is used
during the second partition phase to reduce the chance that skew causes an in-memory
join to exceed the memory of a given processor.

3.2 Skew-Optimized Hash Joins

Walton et al. described a taxonomy of various types of skew that can affect a join
algorithm [30]. This thesis only handles a subset of the types of skew described in the
taxonomy, namely attribute value skew.

Dewitt et al. improved the existing methods by adapting them to handle skew
explicitly [11]. This paper compared several algorithms but found the following to
be the most performant. It first builds a histogram of the key distribution from a
sample of the build and probe relations. If the histograms show neither relation is
skewed, the algorithm uses a hybrid hash join. Otherwise, it uses a skew-specific
algorithm, with the more skewed distribution as the build relation. The skew algorithm
builds many partitions, using the histogram and range partitioning to build them
approximately equally size. These partitions are then distributed to processors in a

20



3 Related Works

round-robin fashion. Each processor then runs repeated in-memory hash joins on
subsets of partitions that fit in memory.

Due to increases in memory size, the joins described above assume that build relation
size is far larger than memory. In contrast, many modern join implementations are
optimized for build relations that fit in memory. The join described in this thesis
assumes that the build relation fits in memory. We now look at some related main
memory joins, such as the radix-join, created by Manegold et al. [18]. It partitions
similarly to the Grace and Hybrid hash join but with the purpose of improving cache
locality rather than due to the size limitations of main memory. Our system does not
radix partition but processes frequent keys thread-locally, improving cache locality
during hash table construction.

Blanas et al. compare a radix partitioning join with a non-partitioning main memory
join [5]. They observed that a non-partitioning join performed better than a partitioning
join on skewed workloads. This was because skewed workloads cause an imbalance in
partition sizes, resulting in some threads taking longer than other threads. Additionally,
it was found that highly skewed workloads result in fewer cache misses. It should be
noted that the tested workloads feature a primary key build relation and a skewed,
Zipf-distributed probe relation. This differs from the workloads we focus on in this
thesis — those with skewed build relations.

Leis et al. developed the Morsel-driven technique for achieving high parallelism
in a main memory hash join [17]. This method schedules work in granular morsels,
allowing work stealing of morsels between threads. They note that this results in
balanced work between threads, mitigating some effects of skewed workloads. Though
this is undoubtedly true, our work suggests that imbalance can still occur when build
relations are highly skewed. We extend the ideas of morsel stealing to Sub-morsel
Stealing, allowing skewed morsels to be split into smaller work units.

More recently, Rödiger et al. built Flow-Join, a method for handling skew in dis-
tributed hash joins [25]. The system finds heavy hitters with the Space-Saving algorithm,
a technique for finding the approximate top-k [19]. It then broadcasts build tuples
to other nodes to perform local hash joins. For the heavy-hitter build keys, it instead
broadcasts the associated probe tuples, keeping the skewed build keys on the originat-
ing node. This leaves the skewed key spread across the system, allowing it to handle
build keys which would overwhelm any single node.

3.3 Skew Recognition Techniques

A commonly occurring pattern in skew-optimized joins is the use of estimation tech-
niques to identify the presence of skewed build keys. This thesis uses the HyperLogLog

21



3 Related Works

sketch of Flajolet [12] and the AMS sketch of Alon et al. [1] to estimate the build key dis-
tinct count and second frequency moment. Umbra provides these sketches for all base
relations. Based on these values, we attempt to decide before query runtime whether
to use the standard hash-join or skew-optimized join. Our final test versions do not
use this feature; we leave the application of this method as future work. Nevertheless,
this idea is analogous to the histogram approach of Dewitt et al. [11], which is used to
select between regular and skew-optimized algorithms.

The Space-Saving algorithm in Flow-Join is used for more granular decision-making,
as it chooses how to handle specific skewed key values at runtime. Our system also does
runtime per-key estimation by probabilistically counting the frequency of keys. Unlike
Space-Saving, our approach does not attempt to find the heavy hitters but rather to find
all keys above some frequency threshold. We take this approach as we believe that all
keys of high multiplicity can benefit from improved cache utilization. Our probabilistic
counting method is related to the Morris approximate counting technique, though we
use less space while attaining less accuracy [20]. Finally, it is worth mentioning the
Count-Min sketch [9]. We considered using this sketch to find the frequently occurring
keys at materialization time. Unfortunately, because sketches cannot be resized and the
number of tuples is unknown before materialization time, there is no way to instantiate
a sketch and guarantee that the error rate will not exceed some bound.

3.4 Linked List Optimization

Previous works have identified issues with linked lists and provided methods to fix
these problems. Shao et al. described the problems of inefficient space usage and long
data dependency chains in linked lists [28]. They developed a technique known as
unrolling, which stores multiple values per linked list node. The number of items
stored per node is a constant in their design.

Bagwell introduced the VList, which allowed more efficient random access to linked
lists [2]. In this design, multiple values are stored per node, but unlike unrolled lists,
the nodes increase in size exponentially. The primary purpose of this node sizing is to
amortize the cost of lookups by index, but they note that this scheme also improves
cache performance.

Recent work uses similar ideas to optimize duplicate handling in Umbra’s chaining
hash join [27]. Their collision lists contain tuples with the same key within separate
sub-lists. Within these sub-lists, each node can contain an array of multiple tuples. The
first node for a given key is sized to fit within a single cache line. Subsequent nodes for
the same key are increased in size exponentially. This results in a logarithmic decrease
in the length of the linked list, significantly reducing cache misses. We use this method

22



3 Related Works

for eager compaction. We discuss this method and how we modified it to our use case
in Section 4.3.2.

In the next chapter, we describe the technique used to improve cache utilization in
parallel hash joins.

23



4 Improving Cache Performance

The previous section discussed two issues that reduce the performance of hash joins:
poor cache and thread utilization. We saw in Figure 2.1b that the L1 cache miss rate has
a strong relationship with the total execution time of a join. A high cache miss rate is
typical of a program with poor cache locality. Given the high join times in Figure 2.1c,
we first address the issue of cache locality.

4.1 Linked Lists for Collision Resolution

As explained in Section 2.1, a separately chained hash table uses linked lists for collision
resolution. Linked lists are known to have a potentially high cache miss rate [24]. With
this in mind, why do we use a separately chained hash table rather than an open
addressing one? Separately chained hash tables allow tuples to vary in size, unlike
open addressing schemes, which require all tuples to be of equal sizes [17]. Perhaps
more importantly, separately chained hash tables are fast to build since resolving a
collision involves insertion at the front of the collision list. If build time accounts for a
large proportion of the total join time, a fast build time can result in a fast total join
time. Additionally, optimizations can mitigate the problems with linked lists. First,
using a large hash directory reduces the probability of hash collisions. This decreases
the average length of hash buckets, reducing the amount of linked list iteration and
the associated cache misses. Second, Umbra uses a small bloom filter in the hash
directory pointer, significantly reducing linked list iteration on probe misses [17]. These
optimizations allow Umbra’s chaining hash table to be highly performant.

4.1.1 Effects of Skew on Collision Lists

Surprisingly, high skew on the build side can sometimes improve chaining hash table
performance. This can be seen in Figure 2.1c, where the join time decreases at very
high skew. With higher skew, fewer hash directory slots must be accessed. As this
reduces the size of the working set, cache utilization improves.

What, then, is the problem with skewed keys and chaining hash tables? Skew in
both the build and probe relations have a multiplicative effect. Build side duplicates
result in a hash table with long collision linked lists. Probe side duplicates cause these

24



4 Improving Cache Performance

linked lists to be iterated over repeatedly. This is the same effect seen in Figure 1.2
where build and probe side duplicates cause a large increase in output size and thus
total work required.

This leads us to the goal of this section — to find a higher performance means of
traversing collision lists. If there are probe side duplicates, we cannot decrease the
need to repeatedly probe the hash table and potentially iterate across long collision
lists. However, we can make the collision list iteration less costly. The following section
describes a method to do this by compacting tuples into dense arrays and thus using
caches more effectively.

4.2 Improving Cache Locality

When traversing a linked list, adjacent nodes are likely not in adjacent memory. Thus,
subsequent nodes are frequently not cached. The solution to this problem is to place
adjacent nodes into adjacent memory, that is to say, into an array.

4.2.1 Naive Collision Array

A naive solution to the problem of linked collision lists is to replace the linked lists with
arrays. This could be achieved easily with the following algorithm. First, we materialize
the tuples and build the hash table with regular collision lists. Then, we iterate over
each collision list, replacing each with an array. This is done by first traversing a given
list and recording its length. Next, we allocate enough memory to hold all the tuples
and their hash values from a given collision list. Since there is no longer a null pointer
to signify the end of the list, we allocate space for a length variable at the head of the
array. After setting this length field, we re-traverse the list, copying tuples and hash
values into the newly allocated memory. Finally, we replace the collision list pointer
with a pointer to the array.

Consider how probing works in the above design. We start by going to the offset
associated with the hash value in the hash directory. If a matching tuple exists, there
will be a pointer to the collision array. At the head of the array is its length; this is used
to bound iteration over the array. We now traverse the array, checking each hash value
for matches and emitting matching tuples.

There are many workloads where this will perform better than the existing hash table
implementation. The tuples and hash values can be read sequentially from memory.
This will significantly improve cache performance, as subsequent adjacent tuples will
likely be in the cache. Due to the sequential read pattern, adjacent tuples outside the
current cache line can likely be prefetched into the cache.

25



4 Improving Cache Performance

Listing 4.1: Hash table node structures.
1 struct TupleNode {
2 TupleNode* next;
3 uint64_t hash;
4 char tuple[TUPLE_SIZE];
5 }
6 struct TupleArrayNode {
7 TupleArrayNode* next;
8 uint16 length;
9 uint64_t hash;

10 char tuples[TUPLE_SIZE][length];
11 }

4.2.2 Array Nodes

Though the above design will perform well on many skewed workloads, it has a few
problems. First, it lacks a useful optimization. Each collision array contains many
duplicated hash values. If every hash value in a given array were identical, it could
be recorded once at the head of the array. This would save space, further improving
cache utilization. However, due to hash collisions, there can be multiple hash values in
a given collision array. An alternative is to use a separate array for tuples that share
a hash value. These arrays can be linked together so they can be reached from their
hash directory slot. This can be done by adding a pointer field before the length and
hash fields and then linking these array nodes into a linked list. This is essentially the
structure of the collision list nodes used in this thesis.

We explicitly define these nodes — TupleArrayNode in Listing 4.1. For comparison,
we also define the structure of regular nodes. Each TupleArrayNode consists of a
header and an array of tuples. The header contains a next pointer, a length field, and a
hash value.

The actual implementation contains one difference from the above definition — the
location of the length field. To save space, the length is stored in the upper 16 bits of the
next pointer rather than using a separate field. This limits the length of tuple arrays to
216. Thus, in our design, a single array node will not necessarily contain all tuples in a
given collision list that share a hash value. We will see in the next section that there are
other reasons to relax this requirement. One notable feature of combining the length
field into the next pointer is that TupleArrayNode and TupleNode headers have an
identical memory layout. The length field will not be set in a standard TupleNode, but
the next field, hash value, and first tuple will be located at the same offsets within the
node. This is useful as it allows both types of nodes to be included in the same collision
list. Standard and array-based collision list diagrams are provided in Figure 4.1a and

26



4 Improving Cache Performance

0

1

2

. . .

hash

tuple

hash

tuple

hash

tuple

hash

tuple

×

hash

tuple

(a) Umbra’s current collision list nodes, containing only a next pointer, the hash value, and the
tuple.

0

1

2

. . .

1

hash

tuple1

2

hash

tuple1

tuple2

0

hash

tuple

0 ×

hash

tuple

(b) Collision list nodes containing a hash value, a next pointer, and an array of tuples. The top
16 bits of the next pointer contain the length of the tuple array. Non-array nodes have a
length field value of 0 despite containing a single tuple.

Figure 4.1: Collision list node structure for different versions of the hash table.

Figure 4.1b, respectively. In the latter, it can be seen that the first nodes inserted in the
list were standard nodes rather than array nodes. In the following section, we describe
how these array nodes are constructed.

4.3 Array Node Construction

In Section 4.2.1, we described a naive solution to the issue of poor cache performance
when hash joining skewed relations. Unfortunately, there is a problem with this
algorithm. Namely, the time spent copying collision lists into compact arrays increases
the time spent on the build stage of the join. On skewed workloads with highly skewed
build and probe relations, the probe stage can take most of the execution time. In this
case, spending more time building the hash table is a good tradeoff so that much less
time can be spent probing it. However, if the workload is not very skewed, the build
stage will likely take much of the execution time. In this case, probing a linked list will
not take significantly longer than probing a collision array. Any time spent building

27



4 Improving Cache Performance

the collision arrays is wasted.

4.3.1 Restricting Compaction to Skewed Keys

The problem was eagerly compacting all collision lists into collision arrays. We can
instead only build array nodes when there are many duplicates of a given key. For
keys that only appear occasionally, it is not worth spending the time to copy the linked
lists into more dense array nodes. This leads to a simple description of the insertion
algorithm. If a key has yet to be seen many times, insert the tuple directly in the
global hash table. If a key has been seen many times, aggregate it into compact array
nodes. This algorithm is provided as pseudocode in Listing 4.2. After this algorithm
has inserted all tuples, we add all compacted array nodes into the global hash table.

It remains to describe how to determine whether a key has been seen many times.
When the hash directory is constructed, we can create a parallel array of counters.
Every time we insert a key at an offset in the hash directory, we increment the counter
at the same offset. If the counter is below a specified bound, we insert the tuple as
usual; otherwise, we compact the tuple into an array node.

Since there are hash collisions, this will combine the counts of multiple keys, but this
will be rare enough not to matter.

A more important concern is space usage. We must not slow down queries that do
not have skewed keys. Incrementing and checking the counts needs to be very fast —
the counters need to be cached. We can increase the chance that counters are cached by
replacing them with smaller probabilistic counters. These probabilistic counters use a
single bit per hash table slot. Rather than incrementing until the value exceeds some
bound, for each tuple inserted in a given hash slot, we set the associated bit with a
probability of 1

duplicateBound . This can be seen in lines 10-11 of Listing 4.2. We discuss
this issue in more detail in Chapter 6.

Listing 4.2: Algorithm to insert tuples in the global hash table or local skew table.
1 duplicateBound = 128
2 bool isSkewed[tableSize]
3 void* hashTable[tableSize]
4 threadlocal map<uint64_t, SkewTableEntry> localSkewTable
5

6 def insert(tupleNode):
7 if isSkewed[tupleNode.hash % tableSize]:
8 localSkewTable[tupleNode.hash].insert(tupleNode)
9 else:

10 if random(0, duplicateBound) == 0:
11 isSkewed[tupleNode.hash % tableSize] = 1
12 insert tupleNode at head of hashTable[tupleNode.hash % tableSize]

28



4 Improving Cache Performance

So far, we have yet to explain the process of compacting tuples into array nodes. We
cover this in the next section.

4.3.2 Local Aggregation

During the insertion process, any hash values which is seen enough times will be
determined to be skewed. These skewed tuples will be compacted by copying them into
array nodes. We chose to do this compaction locally. This has a downside: duplicates
processed by separate threads will not be compacted together. For example, consider a
machine with 100 threads. If 100 duplicate keys arrive after the key has been determined
to be skewed, each duplicate could be processed by a different thread. This would
result in no improvement, and any time spent on the compaction algorithm would be
wasted. Nevertheless, we did not find a means to perform compaction across multiple
threads safely and efficiently.

The choice to compact locally drastically simplifies the compaction process. We need
a mapping from the skewed hash values to the associated array nodes. Since we do not
know the number of skewed hash values before insertion, we use a resizable hash table,
which we call a skew table. Each thread maintains a separate skew table, which is an
instance of the hopscotch map library [13]. The key in a skew table is the hash value of
a tuple key, and the value is a SkewTableEntry. When a tuple is inserted in the skew
table, we look up the associated SkewTableEntry and insert the tuple in the entry. This
insertion can be seen in line 8 of Listing 4.2. We tested two methods of aggregation:
lazy and eager compaction. These have different SkewTableEntry formats and insertion
methods. We describe them both below.

Lazy Compaction

In lazy compaction, a SkewTableEntry consists of two lists: a list of regular tuple nodes
that have not been compacted and a list of tuple array nodes that have been compacted.
A definition of this SkewTableEntry is shown in Listing 4.3. When a tuple is inserted in
the entry, we first check if the chain of single tuples is longer than some bound. If it
is, we allocate an array node, copy the chain of single tuples into the array node, and
insert it as the tail of the array node list. Then, we insert the new node into the single
tuple list.

At the end of the hash table build stage, all the tuples in the skew table must be
inserted into the global hash table. Any un-compacted single tuple chains must be
compacted at this time. If a given hash value only has a short single tuple chain, we
will skip compaction and insert the single tuple chain directly into the global table. This
allows us to avoid compacting tuples, which are, in fact, not very skewed. We insert

29



4 Improving Cache Performance

the array nodes only after inserting any such short single tuple chains. This is done for
two reasons. First, this is useful for Sub-morsel Stealing, as described in Chapter 5. By
placing all single tuple nodes contiguously at the end of the chain, these can be treated
as a single sub-morsel. Secondly, we improve branch prediction during the probe stage
by not mixing single and array nodes.

The main benefit of the lazy compaction algorithm is its simplicity. Unfortunately,
this simplicity comes at the cost of performance. This method must re-scan single tuple
nodes when copying into array nodes. Thus, each compacted tuple is processed three
times: once during materialization, once when appended to a single tuple chain, and
once when copied into an array node. Ideally, we would only process each compacted
tuple twice, once during materialization and once to compact into an array node. This
can be achieved with the second compaction algorithm: eager compaction.

Listing 4.3: Lazy Compaction SkewTableEntry and insert function.
1 struct SkewTableEntry {
2 TupleNode* tupleHead;
3 TupleNode* tupleTail;
4 uint16_t numSingleTuples;
5 TupleArrayNode* chunkHead;
6 TupleArrayNode* chunkTail;
7 }
8

9 def insert(entry, tupleNode):
10 if entry.numSingleTuples == maxChunkLen:
11 newChunk = allocate(maxChunkSize)
12 newChunk.hash = tupleNode.hash
13 newChunk.length = maxChunkLen
14 insert newChunk at end of entry.chunkHead, entry.chunkTail list
15 clear entry.tupleHead, entry.tupleTail
16 insert tupleNode at end of entry.tupleHead, entry.tupleTail list

Eager Compaction

Lazy compaction has the problem that copied tuples must be traversed three times:
once during materialization, once during initial hash table insertion, and once when
copying into array nodes. We would prefer to immediately copy a tuple into an array
node when inserted in a SkewTableEntry. Nevertheless, since we do not know how
many tuples there are with the same key, it is difficult to pre-allocate an array node of
the correct size. If we pick a constant size that is too small, cache performance will not
be improved sufficiently. If we pick a constant size that is too large, some array spots
may be unused, and we will waste space.

30



4 Improving Cache Performance

The solution is to create linked list nodes that increase in size exponentially. These
were described by Bagwell [2] and implemented in recent work on the Umbra hash join
[27]. In this latter work, all the nodes that share a given key value are placed within
a sub-list of the collision list. The nodes contain multiple tuples and are allocated in
exponentially increasing size.

We use the allocation scheme of [27] for eager copy compaction. Though our collision
lists also contain sub-lists, ours are not guaranteed to contain tuples of a single key
value. Their sub-lists are designed to allow skipping of tuples with different keys
during the probe stage, while ours are used for Sub-morsel Stealing, as described in
Chapter 5. Their method directly builds the exponentially sized array nodes on the
global hash table. As previously described, we do this aggregation locally to avoid
contention on the frequently updated nodes containing skewed keys.

We will now describe the compaction algorithm in more detail. The SkewTableEntry
used in eager compaction can be seen in Listing 4.4. It only contains a list of array
nodes; no single tuple nodes are stored. Upon insertion, we check if there is space in
the chunkTail node. If there is no space, we must allocate a new node. We multiply
the currentChunkLen variable by a constant to get the new chunk length and update
currentChunkLen to this value. We used a growth factor of 1.5, but other values would
likely have worked well. A new node is allocated of length currentChunkLen and
inserted at the end of the array node list. Next, we update nextInChunk to 0, meaning
the new tuple will be copied at an offset of 0 in the new chunk.

At this point, we know there is space for another tuple in chunkTail. We copy the
new tuple into chunkTail at a tuple offset of nextInChunk, and increment nextInChunk.

Listing 4.4: Eager Compaction SkewTableEntry and insert function.
1 struct SkewTableEntry {
2 uint64_t currentChunkLen = 1;
3 uint64_t nextInChunk = 0;
4 TupleArrayNode* chunkHead;
5 TupleArrayNode* chunkTail;
6 }
7

8 def insert(entry, tupleNode):
9 if entry.currentChunkLen == entry.nextInChunk:

10 entry.chunkTail.length = entry.currentChunkLen
11 entry.currentChunkLen *= 1.5
12 newChunk = allocate(entry.currentChunkLen)
13 newChunk.hash = tupleNode.hash
14 insert newChunk at end of entry.chunkHead, entry.chunkTail list
15 entry.nextInChunk = 0
16 copy tupleNode.tuple to entry.chunkTail.tuples[entry.nextInChunk]
17 entry.nextInChunk++

31



4 Improving Cache Performance

Since the first array chunk is of length one, as an optimization, rather than allocating
a new node, we can convert the inserted single tuple node into an array node by setting
the length field from 0 to 1. Unfortunately, this optimization cannot be used with
Sub-morsel Stealing, as will be described in Chapter 5.

As with lazy compaction, the compacted tuples must be added to the global hash
table at the end of the build phase. Unlike lazy compaction, no copying is required as
all tuples have already been copied to array nodes. In each SkewTableEntry, the final
array nodes may not be full. In this case, the length of the final array node needs to be
set to the correct value before inserting the array node list into the global hash table.

Unsurprisingly, this method performs better than lazy compaction. Both the Compact
and +Stealing code versions used for evaluation in Chapter 7 use eager compaction
due to the better performance of this technique. Nevertheless, we have included the
lazy compaction method as its simplicity allows more flexibility when implementing
Sub-morsel Stealing.

4.3.3 Insertion Algorithm Example

We finish this chapter with an example of the Node Compaction algorithm. The
eager compaction method is used, though most examples would also apply were lazy
compaction used instead. The description can be followed in Figure 4.2 starting at 1 .

At 1 , we have a new tuple to be inserted in the global hash table. We check the
skewed bit set, finding a 0. This means that few duplicate hash values have already
been inserted in the global hash table. Since the skew bit was not set, we insert the
tuple directly in the global hash table at 2 . At this point, we increment the associated
bit with a probability of 1

duplicateBound .

At 3 , hash value 789 is found in the skewed bit set due to the previously inserted
white tuple having set the skew bit. Rather than being inserted in the global hash table,
it will be inserted in thread 1’s local skew table. There is already an entry containing
two array nodes for this hash value in the skew table; At 4 , we see that the second
node is not yet full. As the node is not full, the length must still be set in the node
header. We now move to Figure 4.3, starting at 5 . Here, we see that the tuple with
hash value 789 has been copied into the array nodes. Since the node is full, the length
field has been set to 2.

After all tuples have been inserted in either the global hash table or local skew tables,
the skew tables need to be merged into the global hash table. At 6 , the array node
for hash value 789 in thread 2’s skew table has been inserted in the global hash table.
Finally, at 7 , the same is done for thread 1’s entries.

This ends the chapter on improving cache performance. The next chapter discusses
how the proposed ideas can be extended to improve thread utilization.

32



4 Improving Cache Performance

1

123

3

789

0

Skew Bit Set

0

0

1

0

Global Hash Table

0 ×
123

2

0
789

789 chunkChain 1
789

- ×
789

4

Thread 1 Skew Table

789 chunkChain 1 ×
789

Thread 2 Skew Table

Figure 4.2: An example of the hash table insertion algorithm. The global hash table
and the skew bit set are pictured above. Below, the thread-local skew table
holds the tuples with potentially skewed hash keys. A description of the
numbered steps is provided Section 4.3.3.

33



4 Improving Cache Performance

0

Skew Bit Set

0

0

1

0

Global Hash Table

0 ×
123

1
789

7
2
789

1
789

6
0
789

789 chunkChain 1
789

2 ×
789

5

Thread 1 Skew Table

789 chunkChain 1 ×
789

Thread 2 Skew Table

Figure 4.3: Insertion algorithm example continued

34



5 Improving Thread Utilization

As described in Section 2.4.2, a morsel consists of a set of tuples from a pipeline source,
such as a table scan. A morsel is processed by executing it against the generated code
for the pipeline. If the pipeline contains joins, a single tuple from the source can map
to multiple tuples later in the pipeline. Thus, a single morsel can require an arbitrary
amount of work. This can lead to an imbalance of work between threads, as one thread
may process an expensive morsel while all others process cheap morsels.

This issue can be mitigated by reducing morsel size. However, this is a tradeoff as
described in Section 2.4.2. Additionally, because a morsel can result in an arbitrary
amount of work, any technique that requires a thread to complete all of a given morsel’s
work can result in imbalance. Thus, the solution is to let threads dynamically split the
work of a morsel after that morsel has started processing. This chapter describes our
technique for allowing threads to split morsels.

5.1 Morsel Splitting

In the Umbra database system, a morsel represents a piece of work to be processed. The
specific definition of a given morsel depends on the code used to process it. Notably,
the execution system does not know the binary representation of a morsel. When the
execution system starts running a pipeline, it is provided with a pickMorsel function,
which defines how to generate morsels. This function is specific to the type of data
source at the base of the pipeline. For example, a table scan operator is a pipeline
data source and provides such a function. The morsels this function returns consist of
two integers defining a range within the table scan. Most morsel types have a similar
definition, though this is not necessary. If we wish to split morsels into sub-morsels,
we need a similar data type definition for sub-morsels.

5.1.1 Defining Sub-Morsels

We start with an example to motivate the following explanation. Assume we are hash
joining two relations and have completed the materialization and build phases. During
the probe stage, all threads but one have already completed their work and emitted all
matches. The one remaining thread is still working through the one remaining morsel.

35



5 Improving Thread Utilization

Let us assume this morsel is from a table scan and is defined by the range [a, b).
The remaining thread is currently probing with the tuple at index m, which is within
this range. If another thread wishes to help this thread, it could offer to take some
subset of [a, b). Perhaps it takes the latter half of the remaining work: [ b−m

2 , b). This is
a reasonable way to split the morsel and has the benefit of representing a sub-morsel
the same way as the parent morsel.

Nevertheless, we do not define sub-morsels in this manner. We have chosen to take a
different approach for several reasons. First, because a single tuple in the data source
can map to an arbitrary number of tuples higher in the pipeline, any technique that
does not split the work of a single probe tuple can only partially solve the problem of
work imbalance. Second, if the work required per tuple is relatively well distributed
across the base data source, the adaptive morsel sizing described in Section 2.4.2 may
solve the issue. Lastly, such a solution must be implemented separately for every data
source.

Splitting Work of a Single Tuple

The fundamental issue with the above method is that a single tuple from the source can
result in an arbitrary number of tuples higher in the pipeline. The point in execution
when we can split the work for a single probe tuple is while iterating through the
collision list in the hash table. What is needed is a way to split off a piece of a collision
list and let another thread emit matches for this piece. To do this, we break collision
lists into chunks, each containing many tuples. We leave the exact description of these
chunks to the following section, as we tested multiple formats.

With collision lists separated into chunks, an idle thread can steal a single chunk
of a collision list from the thread that initially started probing the list. The original
thread must skip the stolen chunk to avoid emitting redundant matches. A given chunk
consists of a set of build tuples, which a stealing thread will compare with the probing
tuple. This thread must also have access to the probing tuple. Thus, in addition to
stealing a collision list build chunk, the thread will copy a reference to the probe tuple.
This necessitates an unfortunate aspect of the algorithm — the probe tuple must be
materialized so that stealing threads can access it. Fortunately, only one probe tuple at
a time needs to be materialized per thread and per join.

When stealing work, the probe tuple must be copied from a published sub-morsel
into the stolen sub-morsel. This is because the initial thread may start probing with a
new tuple while a helping thread is still emitting results for the previous probe tuple.
Since the published probe tuple will be overwritten, the helping thread needs a copy of
the previous probe tuple.

36



5 Improving Thread Utilization

Listing 5.1: Type definition of a sub-morsel of work
1 struct SubMorsel {
2 void* buildChunk;
3 char* probeTuple = allocate(probeTupleSize);
4 }

Sub-Morsel Definition

So far, we have only loosely described a stealable sub-morsel; we now provide a
definition in Listing 5.1.

The probeTuple field references a copy of the current probe tuple. The sub-morsel
owns the associated memory and is reused for each probe tuple in turn. An alternative
approach would be to use a shared reference. This would likely be a useful optimization
but is left as future work.

The buildChunk field is a pointer to a subset of a collision chain from the build
side. The value pointed to could be either a regular TupleNode or a TupleArrayNode;
hence, it is defined as void*. We tested two ways of splitting collision lists into build
chunks. Our first approach was using the TupleArrayNode as a build chunk, as defined
in Listing 4.1. In this approach, subsequent build chunks are accessed via the next
pointer. Thus, when a morsel is stolen, the published build chunk will be updated to
the current buildChunk’s next value.

This method works when using the lazy compaction method, as array nodes are
always larger than some specified bound. Even so, this is inefficient, as the sub-morsel
size is too small. We found 1024 to be a suitable array node length for efficient
compaction. However, this is too small to compensate for the overhead of scheduling
a sub-morsel. This issue is even more problematic when using eager compaction. In
this method, array nodes start with a length of one and increase exponentially. This
means that some build chunks will be as small as a single tuple; this is far too small to
be worth scheduling as a sub-morsel.

An alternative is to add a second pointer to tuple nodes. Instead of referencing the
subsequent node, this pointer skips several nodes and references the head of the next
build chunk. This allows multiple array nodes to be used as a single build chunk. A
definition can be seen in Listing 5.2, where far is the pointer to the first node in the
subsequent build chunk. When using these multi-node build chunks, the build chunk
in a published morsel is updated to the far pointer of the current build chunk rather
than the next pointer.

Recall that regular tuple nodes are inserted in the global hash table in the same
collision lists as these large array nodes. We want to avoid adding this far pointer to
regular nodes as this would significantly increase node size while providing no benefit.

37



5 Improving Thread Utilization

0

1

2

. . .

1

hash

tuple

2

hash

tuple

tuple

1

hash

tuple

2

hash

tuple

tuple

×0

hash

tuple

Figure 5.1: Structure of collision list with multiple node build chunks.

Thus, we only add the far pointer to array nodes. Array nodes can be differentiated
from regular tuple nodes by checking if the length field in the top 16 bits of the far
pointer is non-zero. The node does not contain a far pointer if this field is zero. Whether
a node is a regular node or an array node, any incoming pointer will reference the
node’s next pointer. This is so that the next pointer is always at a known offset,
allowing the length bits to be checked and the type of node discerned. An illustration
of this structure can be seen in Figure 5.1. Here, we see three build chunks. The first
two build chunks each consist of two array nodes. The last build chunk is a single
regular node, with length bits set to zero.

Having described the structure of sub-morsels, we move on to an explanation of the
stealing algorithm.

Listing 5.2: Type definition of a tuple array node
1 struct TupleArrayNode {
2 TupleArrayNode* far;
3 TupleArrayNode* next;
4 uint16 length;
5 uint64_t hash;
6 char tuples[TUPLE_SIZE][length];
7 }

Sub-Morsel Stealing

As described above, the sub-morsel is the unit of work that a busy thread will publish
for other threads to steal. An initial implementation of the stealing algorithm works as
follows. We have two arrays of sub-morsels, each with a length equal to the number
of threads. The array published consists of published sub-morsels, and the array
stolen consists of stolen sub-morsels. Assume we have two threads: thread 0 is busy

38



5 Improving Thread Utilization

probing a long collision list, and thread 1 is idle. While thread 0 probes the collision
list, it will store the subsequent sub-morsel of work at published[0]. Thread 1 wishes
to help complete the join, so it scans the published array, looking for sub-morsels
to steal. It finds the sub-morsel at published[0] and copies it to stolen[1] Then it
updates published[0] to the next sub-morsel of work. Assuming more chunks are
in the collision list, the next sub-morsel will consist of the same materialized probe
tuple but the following chunk of build tuples. Updating the published sub-morsel is
necessary to avoid emitting results more than once. A diagram of this example can be
seen in Figure 5.2. In Figure 5.2a, thread 0 publishes a sub-morsel to published[0],
and in Figure 5.2b thread 1 steals the published sub-morsel.

Separate Sub-Morsels per Join

An important piece is missing from the above description — what if there are multiple
joins in a given pipeline? We simply duplicate the published and stolen arrays for
each join in the pipeline. Thus, we have a published sub-morsel and a stolen sub-morsel
for every join and thread. Then, when the idle thread searches for a sub-morsel to steal,
it iterates over the published sub-morsels for every join and every thread.

Is it necessary to have separate sub-morsels for each join? It is indeed necessary for
published sub-morsels, as a given thread may need to publish sub-morsels simulta-
neously for multiple joins. Unlike published sub-morsels, each thread can only steal
a single sub-morsel at a time. Threads only steal sub-morsels when idle. If a thread
is processing a stolen sub-morsel, it is not idle and will not steal another sub-morsel.
Nevertheless, separate sub-morsels are needed per join, as joins may have different
probe tuple sizes.

Lastly, it should be asked whether a thread can have both stolen and published
sub-morsels simultaneously. The answer is yes, though, for different joins. If a thread
is processing a stolen sub-morsel, a join higher in the pipeline could be highly skewed.
In such a situation, the thread will publish the sub-morsel for the higher join, allowing
idle threads to help.

5.2 Scheduling

To understand sub-morsel scheduling, we take a step back and describe the scheduling
of morsels in the Umbra database system. Each source operator, such as a base table
scan, defines a pickMorsel() method, which allocates morsels. This method finds
a morsel to run if one exists and returns a flag if no morsels remain. Rather than
returning morsels, the method stores allocated morsels in thread local storage to be

39



5 Improving Thread Utilization

accessed when the morsel is subsequently processed. Importantly, this method is
thread-safe, as all threads call it in parallel.

Once a thread obtains such a morsel, it processes each tuple in the morsel against the
code for the pipeline. Since Umbra is a code-generating system, the code for a pipeline
is a compiled function that is called with the morsel as an argument. With this in mind,
we see the morsel scheduling loop in Listing 5.3.

Listing 5.3: Morsel scheduling loop
1 while pickMorsel():
2 runPipelineMorsel()

We now update the scheduling algorithm to handle Sub-morsel Stealing in Listing 5.4.
Each thread runs the standard morsel processing loop until all morsels have been
assigned to threads. At this time, threads that have finished their morsels can help
those that are still busy. An idle thread may not find a sub-morsel to steal immediately
but will continue to search until all threads have completed their regular morsels. This
method of waiting for sub-morsel is not ideal. Instead, the idle threads should sleep
and only wake when sub-morsels become available, allowing their resources to be used
by other queries. This optimization is left as future work.

Listing 5.4: Morsel and sub-morsel scheduling loops
1 while pickMorsel():
2 runPipelineMorsel()
3

4 while any thread still processing regular morsels:
5 if pickSubMorsel():
6 runPipelineSubMorsel()

5.2.1 Picking Sub-Morsels

The pickSubMorsel() method performs the stealing described in the previous section.
Here, an idle thread iterates over the published sub-morsels of all joins and threads to
find a stealable sub-morsel. This algorithm is shown in Listing 5.5. It should be noted
that the published sub-morsels are modified by multiple threads, as both a stealing
and publishing thread must update the published sub-morsel so that it always contains
the next available work. Given this, care is required to guarantee that concurrent
modifications of published sub-morsels are done safely. We defer an explanation of
this aspect of the algorithm until Section 5.3.

40



5 Improving Thread Utilization

Listing 5.5: Algorithm to steal a sub-morsel
1 SubMorsel published[numJoins][numThreads]
2 SubMorsel stolen[numJoins][numThreads]
3

4 def pickSubMorsel():
5 for j in 1:numJoins:
6 for t in 1:numThreads:
7 if t != currentThread:
8 SubMorsel& pub = published[j][t]
9 SubMorsel& steal = stolen[j][currentThread]

10 if pub.buildChunk:
11 steal = (pub.buildChunk, copy(pub.probeTuple))
12 pub.buildChunk = pub.buildChunk.far
13 return True
14 return False

5.2.2 Running Stolen Sub-Morsels

In Listing 5.4, the pipeline code run on stolen sub-morsels differs from that of regular
morsels. This is because the code to run depends on the join in the pipeline for which
the sub-morsel was stolen. The code for a given join consists of the logic to probe
that join and all code above the join in the pipeline. We see the algorithm used to
process a stolen sub-morsel in Listing 5.6. It also iterates over the join operators in the
pipeline to find the stolen sub-morsel. This iteration could be optimized by storing
the location of the recently stolen morsel. As the number of joins tends to be small,
this optimization would likely have little effect. Thus, we leave it as future work.
Once the stolen sub-morsel is located, the probing code specific to the join is run in
probeSubMorsel().

Listing 5.6: Algorithm to run a sub-morsel
1 def runPipelineSubMorsel():
2 for j in 1:numJoins:
3 if stolen[j][currentThread].buildChunk:
4 joinOperators[j].probeSubMorsel(stolen[j][currentThread])

5.2.3 Probing Sub-Morsels

Unsurprisingly, sub-morsels require a different algorithm for probing from standard
morsels. Additionally, Sub-morsel Stealing necessitates some updates to the standard
probing algorithm. All code shown in this section is generated code within Umbra,
though for simplicity, this is not shown here. We describe the existing standard probe

41



5 Improving Thread Utilization

method in Listing 5.7. It involves obtaining the collision list for a given probe tuple
from the hash table. It then traverses the collision list, emitting any matching build
and probe tuple pairs. The TupleNode type is defined in Listing 4.1, and an example
diagram is shown in Figure 4.1a. The emit() function shown here consists of the code
for the rest of the pipeline.

Listing 5.7: Algorithm to probe regular morsels
1 def performProbe(probeTuple):
2 TupleNode* node = hashTable[hash(probeTuple.key) % tableSize]
3 while node:
4 buildTuple = node.tuple
5 if buildTuple.key == probeTuple.key:
6 emit(buildTuple, probeTuple)
7 node = node.next;

Changes to Regular Probe Method

As mentioned, the above algorithm needs to be updated for Sub-morsel Stealing. Recall
that the updated collision list consists of chunks of tuple array nodes rather than single
tuple nodes. Each chunk consists of one or more array nodes, with each array node
containing a length field and a next pointer. If the length is zero, the node contains
a single tuple and no far pointer. If the length field is non-zero, the node contains
length tuples and has a far pointer.

We now show the updated standard probe algorithm in Listing 5.8. The probing
thread first checks if the length field is non-zero, meaning that it is an array node
and that the collision list is likely long. In this case, the thread publishes a sub-morsel
consisting of the probe tuple and the second build chunk accessed through the node’s
far pointer. The second build chunk is published as the current thread is already
processing the first chunk.

The thread then begins probing. This consists of three nested loops: the first over
chunks, the second over nodes within a chunk, and the inner loop over tuples in a node
array. The inner loop iterates over the node’s tuple array until it reaches the limit as
specified by the length field. The second loop traverses array nodes until it reaches the
next chunk. This is determined by checking if the current node matches the far pointer
of the first node in the chunk, as this points to the subsequent chunk. When a chunk
is completed, the outer loop finds another chunk to process. The next chunk cannot
be used directly, as it was published and may have been stolen by another thread. In
this case, the other thread will have updated the buildChunk pointer in the published
sub-morsel, which the current thread can now use as its next chunk. Upon claiming

42



5 Improving Thread Utilization

another chunk, the published build chunk must be updated to the following build
chunk.

It should be noted that the method as written is not thread-safe. In particular, the
modifications to the published sub-morsel require care to maintain thread safety; this
is covered in detail in Section 5.3.

Listing 5.8: Updated algorithm to probe regular morsels
1 def performProbe(probeTuple):
2 SubMorsel& pub = published[currentJoin][currentThread]
3 chunk = hashTable[hash(probeTuple.key) % tableSize]
4

5 if chunk.length:
6 pub = (chunk.far, copy(probeTuple))
7

8 while chunk:
9 for (node = chunk; node != chunk.far; node = node.next):

10 for buildTuple in node.tuples:
11 if buildTuple.key == probeTuple.key:
12 emit(buildTuple, probeTuple)
13 chunk = pub.buildChunk
14 pub.buildChunk = pub.buildChunk.far

Sub-Morsel Probe method

The method to probe a stolen sub-morsel is more straightforward than the updated
regular probing method; it can be seen in Listing 5.9 It involves finding matches within
a single chunk, accessed through the buildChunk field of the stolen sub-morsel. The
two loops traverse the nodes within the chunk and the tuples with each node. This is
identical to the two inner loops in Listing 5.8, with the only difference being that the
stolen probe tuple is used to find matches and emit result pairs.

Unlike the previous algorithm, this method does not update the published sub-
morsel. Updating the published sub-morsel occurs beforehand when the sub-morsel
was stolen, as seen in Listing 5.5. This simplifies the probeSubMorsel() function, as by
not accessing the published sub-morsel, it is thread-safe.

Listing 5.9: Algorithm to probe stolen sub-morsels
1 def probeSubMorsel():
2 SubMorsel& steal = stolen[currentJoin][currentThread]
3 chunk = steal.buildChunk
4 for (node = chunk; node != chunk.far; node = node.next):
5 for buildTuple in node.tuples:
6 if buildTuple.key == steal.probeTuple.key:
7 emit(buildTuple, probeTuple)

43



5 Improving Thread Utilization

5.3 Concurrency

For clarity, the previous sections have avoided the issue of concurrency. As multiple
threads modify published sub-morsels, reads and writes must be thread-safe; we
address this issue here. In the preceding algorithms, three sections require changes for
thread safety.

1. Publishing first build chunk in a collision list — line 6 of Listing 5.8.

2. Claiming and advancing published build chunk — lines 13-14 of Listing 5.8.

3. Stealing sub-morsel and advancing build chunk — lines 11-12 of Listing 5.5.

In the first case, both the probeTuple and the buildChunk pointer must be set by the
publishing thread before any other thread can attempt to copy the probeTuple value or
update the buildChunk pointer. To achieve this, each published sub-morsel has a shared
mutex; while publishing a sub-morsel, the publishing thread holds an exclusive lock
on the mutex. Though this could lead to contention, this is not a significant concern.
While all threads are processing regular morsels, no threads will be attempting to steal
morsels. Hence, each access to the mutex during this stage will be un-contended. Later,
stealing threads will require read access to the shared mutex. This will cause some
contention, but this is an acceptable tradeoff if there is skew.

The second case occurs when the thread that published a sub-morsel reaches the
end of a build chunk and needs to advance the published sub-morsel to the next build
chunk. By accessing the sub-morsel’s buildChunk pointer through an atomic reference,
this can be achieved without locks. Using an atomic compare-and-swap function, the
current buildChunk value is obtained, then buildChunk is updated to buildChunk.far.

The final case uses both the shared lock and an atomic reference. When a sub-morsel
is stolen, it must be copied from the published area of the publishing thread to the
stolen area of the stealing thread. This involves copying both the probeTuple value
and the buildChunk pointer. Then the buildChunk pointer in the published sub-morsel
must be updated, as in case 2. The published sub-morsel’s mutex is acquired in shared
mode to achieve this. This allows the probeTuple value to be copied by other threads
while guaranteeing that the publishing thread does not update the value while it is
being copied. A copy is necessary so that the stealing thread can access the probeTuple
value if the publishing thread finishes the current collision list and moves on to another
probe tuple. After acquiring the published sub-morsel’s read lock, the buildChunk
value is obtained and updated atomically to buildChunk.far. The stolen buildChunk
value is then set to the obtained build chunk. Finally, the probeTuple value is copied
from the published sub-morsel into the stolen sub-morsel, and the read lock is released.
With these changes, the previous algorithms are thread-safe.

44



5 Improving Thread Utilization

The following section discusses methods used to identify skewed input data. We can
reduce the costs of joining non-skewed data by only using skew-optimizing algorithms
on skewed data.

45



5 Improving Thread Utilization

Published Sub-Morsels

0
buildChunk

probeTuple

1
buildChunk ×

probeTuple ×

Stolen Sub-Morsels

0
buildChunk ×

probeTuple ×

1
buildChunk ×

probeTuple ×

(a) When probing the first collision list node, thread 0 publishes a sub-morsel by copying the
probe tuple into published[0].probeTuple and setting published[0].buildChunk to the
next unprocessed build chunk.

Published Sub-Morsels

0
buildChunk

probeTuple

1
buildChunk ×

probeTuple ×

Stolen Sub-Morsels

0
buildChunk ×

probeTuple ×

1
buildChunk

probeTuple

(b) Thread 1 steals thread 0’s published sub-morsel by copying published[0].probeTuple into
stolen[1].probeTuple, assigning published[0].buildChunk into stolen[1].buildChunk,
and updating published[0].buildChunk to the next unclaimed build chunk.

Figure 5.2: Illustration of sub-morsel stealing algorithm.
46



6 Selecting Join Algorithms

In Figure 2.1c, we saw that high skew can result in extremely long query execution
times. It seems reasonable to always implement the techniques described in this thesis
to avoid this scenario. However, most queries do not involve highly skewed joins and
are thus not susceptible to these problems. Using the methods described in this thesis
would result in worse performance for most queries.

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1

10

Build z

S
p
ee
d
u
p

Version

Baseline

NoBitset

+Stealing

Figure 6.1: Comparison of speedup between NoBitset, which applies skew optimization
techniques to all keys, and +Stealing, which only applies techniques to
suspected skewed keys.

For example, in Figure 6.1, we see a comparison of three Umbra versions on the
benchmark described in Section 7.2.1 The baseline version is Umbra without the
techniques of this thesis, the NoBitset version is Umbra with compaction and Sub-
morsel Stealing applied for every key, and +Stealing is Umbra with compaction and
Sub-morsel Stealing applied selectively to skewed keys. The system used for this
experiment is described in Section 7.1.2.

Notice that the best case speedup is similar for the two test versions. In this case,
most data is skewed, so it helps to apply skew optimization techniques to every key.
But if the data has low skew, such as when the build Z parameter is 0, the version that
always optimizes for skew has a significant slowdown relative to the baseline. On some
queries, the slowdown exceeds 5x.

The amount of slowdown shown above is unacceptable. Some slowdown is a

47



6 Selecting Join Algorithms

worthwhile tradeoff to avoid the worst execution times on skewed data. Nevertheless,
slowing down typical workloads should be avoided. More pragmatically, given the
importance placed on TPC-H benchmark times, any method that significantly reduces
a database’s TPC-H performance is unlikely to be adopted. It is thus incumbent on any
database algorithm to avoid reducing the performance of common workloads as a side
effect of improving performance on rare workloads.

This section discusses how a slowdown of typical workloads can be avoided. More
specifically, we describe techniques to apply skew optimization techniques to skewed
keys and avoid the overhead of these methods for low-skew keys.

6.1 Compile-time vs. Runtime

As Umbra is a code-generating database, there is a separation between the phase when
the code for a given pipeline is generated and when that code is executed. Much of
the information about the distribution of the joined relations is not available at code-
generation time — it is only known during the execution of the query. For example, if
the build relation is not a base table, its size is unknown at compile-time as the query
that outputs the build relation has yet to be executed.

Unfortunately, the decision to use the standard join algorithm versus a skew-
optimized join algorithm must be made when the pipeline code is generated. Generat-
ing code for both versions is possible, but applying this reasoning to other operators
causes a rapid increase in code size. Thus, we must choose which version to generate
at compile-time, using only the available information.

Nevertheless, using runtime information to limit additional work on keys that are
not highly skewed is reasonable. With this in mind, the skewed join algorithm attempts
to classify keys as skewed or non-skewed by counting their frequency at runtime. This
allows skewed keys to use the more complicated skew logic, while non-skewed keys
use the fast path.

The following section shows the sketch-based methods used to select the join al-
gorithm, using information available at compile-time. Next, we look at the runtime
approach based on key frequency.

6.2 Compile-time techniques

Statistics about the distribution of keys in the build and probe relations can help discern
whether a join requires techniques to handle skew. For example, if the number of
distinct keys is close to the cardinality of the relation, then the relation is not skewed,
and skew handling techniques will not improve performance.

48



6 Selecting Join Algorithms

On the other hand, if the cardinality is significantly larger than the number of distinct
keys, there are many duplicate keys. This could mean many keys are duplicated a small
number of times or few keys are duplicated many times. In this case, determining
whether skew handling techniques will be helpful requires deeper analysis.

Clearly, obtaining key distribution statistics can play a part in selecting the proper
join algorithm. In this section, we look at techniques available at compile-time for
estimating such statistics.

6.2.1 Distinct Count

Determining the exact number of distinct keys in a relation requires processing every
key and recording the number of distinct values. This requires O(n) space and is thus
too expensive. The HyperLogLog algorithm provides a means to estimate the number
of distinct keys in constant space [12]. Umbra uses HyperLogLog sketches to estimate
distinct key counts for base relations [22]. This works for base relations, but relations
higher in the tree do not have tuples available for sketching before runtime. Thus,
Umbra uses various heuristic techniques for non-base relations to estimate the distinct
key count.

6.2.2 Self Join Size

Alon et al. developed a technique similar to HyperLogLog for estimating a statistic
known as the second frequency moment [1]. This statistic is equal to the sum of the
squared frequencies of the distinct values of a distribution.

This can be described more succinctly as self-join size. To understand this statistic, it
is helpful to consider some extreme distributions. Consider a relation where every key
is unique. If the relation is joined with itself, every key will only find a join partner
with itself. Thus, the output will be the same size as the input relation.

On the other hand, consider a relation with only one unique key value. In this case,
every tuple will be joined with every other tuple — this is equivalent to a cross-join.
Thus, the output cardinality will be the square of the input cardinality.

This statistic provides a useful notion of the skewness of a relation. If the self-join
size is equal to the input cardinality, the relation is not skewed. If the self-join size is
equal to the square of the input cardinality, the relation is very skewed.

Umbra provides these sketches for base relation columns. As with distinct count,
Umbra combines these estimates using heuristics when higher in the operator tree.

49



6 Selecting Join Algorithms

6.2.3 Effectiveness of Compile-time Sketches

Despite the potential for sketches to estimate the skewness before code generation,
we have yet to find a way to use them effectively. One way to use these sketches is
to generate the skew-optimized join if statistics derived from sketches exceed certain
bounds and otherwise to generate the standard join. We have tried to find suitable
bounds on the Zipf micro-benchmarks using this technique. Each tested bound had too
many false positives or negatives to be helpful. Perhaps more effective values could be
found with a more systematic search of bound values. We leave this as future work.
These compile-time techniques are not used in any tests in the evaluation section.

6.3 Probabilistic Counting

As described in Chapter 4, one of the techniques used in this thesis is compacting
tuples with common keys into dense array nodes rather than linked lists. This results
in significant speedups when there are many duplicates. Unfortunately, we see a slow-
down when few duplicates exist, such as in Figure 6.1 when the build Z parameter is 0.
The reason for this slowdown can be seen in Figure 6.2, where we show the execution
times of the build and probe stages for the same benchmarks. The materialization stage
is omitted as the time spent is negligible. We see that, though the NoBitset version has
probe times comparable to the +Stealing version, the build times on low skew queries
are far worse. For these queries, the additional time spent building array nodes does
not significantly improve performance during the probe stage. The original collision
lists are relatively short and can be traversed quickly. Thus, there is little payoff in
compacting these lists, and the additional time was wasted. This is especially true for
the NoBitset version, which spends a great deal of time during the build stage.

As a side note, the fact that the NoBitset build stage is slower than +Stealing build
stage at high skew is attributable to a difference in the implementations. +Stealing adds
local skew table chains to the global hash table synchronously, as there are expected
to be few such chains. To compare low skew build stages fairly, the NoBitset version
does this insertion in parallel, as many values are expected. This causes a slowdown in
NoBitset at high skew when there are few such chains.

To avoid this situation, we wish to only compact tuples if we have seen many
duplicate keys. The obvious way to achieve this is to build a hash table from hash
values to their frequency, incrementing the frequency every time we see a given hash
value. While the observed frequency of a given hash value is below some bound, we
insert the tuple in the global hash table as usual. If the frequency exceeds the bound,
we process tuples with this hash value thread-locally. This entails adding the tuples to
a local hash table and copying tuple nodes into dense tuple array nodes.

50



6 Selecting Join Algorithms

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.1

Build z

T
im

e
(s
)

Version

Baseline

NoBitset

+Stealing

(a) Build Stage

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.1

1.0

10.0

Build z

T
im

e
(s
)

Version

Baseline

NoBitset

+Stealing

(b) Probe Stage

Figure 6.2: Comparison of stage execution time between NoBitset, which applies skew
optimization techniques to all keys, and +Stealing, which only applies
techniques to suspected skewed keys.

51



6 Selecting Join Algorithms

This technique is generally what we do, with the caveat that we do not count the
frequency of the hash values as described. Storing a count for every hash value would
require creating an array of counters parallel to the main hash table. We did not
implement this, but we believe the space required would be too costly. Nevertheless, it
would be worth testing this method with 8-bit counters; we leave this as future work.

Instead, we count the frequencies probabilistically, storing a single bit per hash
directory slot. Rather than counting until we have reached some bound n, we set the
bit with a probability of 1

n on every insert. This is similar to counting until a bound
is reached, though with some added noise; some frequent keys will not be optimized
for skew, and some infrequent keys will be optimized for skew. Nevertheless, this
technique has been found to work well. This is likely because the small size of the
bitset allows it to be stored in the cache. Thus, accesses are fast.

This technique can be seen as a simpler version of the probabilistic counting described
by [20]. Four bits could be used per slot to improve the counting accuracy using this
technique. We considered testing this method but felt that the increase in space would
likely not be worth the additional accuracy.

The +Stealing version used in the previous benchmarks uses the probabilistic bitset
as described above. As seen in Figure 6.1, using this bitset to selectively enable
skew optimizing techniques on a per hash value basis limits the downsides of the
techniques proposed in this thesis. The following section will evaluate the proposed
skew optimization techniques on several benchmarks. Both test versions shown in the
subsequent section use the bitset described in this section.

52



7 Evaluation

Database systems are frequently evaluated on the TPC-H benchmark. Unfortunately,
these benchmarks are not suitable for evaluating the techniques described in this thesis.
More specifically, TPC-H datasets are generated so that keys are uniform and exhibit
minimal skew. This being the case, we found alternative benchmarks that properly
exercise the skew handling join. Nevertheless, we provide TPC-H benchmark output to
show that, while these techniques do not improve performance, nor do they reduce
performance on the TPC-H workloads. We start this chapter by describing the systems
used to run the benchmarks and then proceed with the benchmark results. Following
this, we provide the results of each benchmark.

7.1 System Setup

Two systems were used to run these benchmarks. Due to its size, the Cardinality
Estimation benchmark was run on a system with more resources. All other benchmarks
were run on the second, smaller system.

7.1.1 System for Cardinality Estimation Benchmark

We run the Cardinality Estimation benchmark on a NUMA system with 4 sockets, each
with an Intel E7-4870v2 CPU with 15 cores and 2 hyper-threads per core, running at
2.30GHz. The system has 1TB of RAM.

Each query was run three times, and the minimum of the three runs was reported.

7.1.2 System for other Benchmarks

All other benchmarks were run on a system with an Intel i9-7900x CPU with 10 cores,
each with 2 hyper-threads, running at 3.30GHz. The system has 130GB of RAM. Each
query is run five times for all such benchmarks, and the minimum execution time is
used in the analysis.

53



7 Evaluation

7.2 Benchmarks

The benchmarks can be split into three groups. First, we have micro-benchmarks with
Zipf distributed relations. These provide a worst-case skew scenario and show the
benefits of our techniques. Next, we have TPC-H and the related JCC benchmarks.
Though the techniques in this thesis make little improvement over the baseline on
these benchmarks, we show that our technique does not reduce performance. Lastly,
we show results on the Cardinality Estimation benchmark. We show that our system
notably improves query time on these workloads.

For each benchmark, we compare three code versions. The Baseline version is Umbra
without the skew handling features implemented in this thesis. The Compact version
includes the feature described in Chapter 4, which compacts collision lists into dense
arrays. The +Stealing version includes the features from both chapter 4 and Chapter 5.
Thus, in addition to compacting tuples, this version allows sub-morsels to be stolen,
improving the load balance between threads.

7.2.1 Zipfian Micro-benchmarks

To test the baseline, we evaluate our test code using the same datasets used in Section 2.4.
These consist of build and probe relations, each with 1e7 tuples. The tuples consist of
two 64-bit integers, a key, and a foreign key. The foreign key is distributed with a Zipf
distribution with varied Z parameters. For the build relation, we vary Z between 0 and
4; Z of 0 is a uniform distribution. For the probe relation, we vary Z between 0 and 0.5;
larger probe Z values result in huge output sizes and execution times.

Each probe relation has two versions, one shuffled and one approximately clustered
by the foreign key. The clustering is done by loading the base relation from a sorted
CSV file. This does not guarantee that the base relation is ordered identically but results
in most duplicate foreign keys being clustered together. The clustered version is used
to exercise the situation when there is a significant work imbalance between probe
morsels. Following are the results.

Probe Shuffled

In Figure 7.1a, we compare the execution time between the two test versions and the
baseline. Below, we see the associated cache misses in Figure 7.1b. Notice that, as in
Figure 2.1b, there is a strong resemblance between the cache misses and the relative
execution time. This holds true for each of the three code versions. However, unlike
Figure 2.1b, the test versions no longer strongly resemble the output size in Figure 2.1a.
The two test versions reduced the execution time significantly by un-tethering the

54



7 Evaluation

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.1

1.0

10.0

Build z

E
x
ec
u
ti
o
n
T
im

e
(s
)

Version

Baseline

Compact

+Stealing

(a) Execution Time

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1e7

1e8

1e9

Build z

L
1
ca
ch
e
m
is
se
s

Version

Baseline

Compact

+Stealing

(b) L1 cache misses

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1

10

Build z

S
p
ee
d
u
p

Version

Baseline

Compact

+Stealing

(c) Speedup of test versions relative to baseline

Figure 7.1: Comparison of joins on Zipf distributed build and probe relations for three
code versions. Probe relations have shuffled order.

55



7 Evaluation

Version Max Speedup Mean Speedup Max Slowdown

Compact 13.8 3.67 1.13
+Stealing 17.5 4.35 1.20

Table 7.1: Summary of results for Zipf tests with shuffled probe relation

cache-miss rate from the output size. The tests have some workloads with low Z values
that result in a slowdown. Note that the test versions here do not use the sketch-based
filters described in Chapter 6.

Finally, we plot the speedup of the test versions relative to the baseline. Both make
significant improvements over the baseline, with +Stealing performing better than
Compact overall. We see a summary of results in Table 7.1. The following section shows
similar tests, this time with clustered probe relations.

Probe Clustered

We now see similar results on workloads with a clustered probe side. The workloads
result in a high imbalance of work between threads and are more suited for the +Stealing
test version. In Figure 7.2a, we compare the execution time between the three code
versions. Note that unlike in Figure 7.1a, Compact shows an increase in execution times
when the probe size Z parameter is greater than 0. In this case, +Stealing maintains
a low execution time at a probe Z of 0.25 and shows a much smaller increase than
Compact at a probe Z of 0.5

We now look at the thread utilization in Figure 7.2b. Both Baseline and Compact
significantly drop in thread utilization at high probe Z values. Though +Stealing
stays high throughout, this should be taken with a large grain of salt. In +Stealing
threads spin when they do not have work; this essentially guarantees near 100% thread
utilization. Ideally, threads should instead wait on a condition variable for work to
become available or for the query to end. Importantly, this would allow concurrently
running queries to use the hardware threads. We leave this as future work.

In Table 7.2, we see a summary of the results on the clustered workload. Given the
workload, +Stealing performs better with a larger maximum and average speedup.

In the following section, we show results on TPC-H and related benchmarks.

7.2.2 TPC-H & JCC Benchmarks

In this section, we show results on the TPC-H benchmark. Unlike the micro-benchmarks
above, TPC-H queries are varied in form to mimic realistic queries used in a business

56



7 Evaluation

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.1

1.0

10.0

Build z

E
x
ec
u
ti
o
n
T
im

e
(s
)

Version

Baseline

Compact

+Stealing

(a) Execution time

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

25

50

75

100

Build z%
T
h
re
a
d
U
ti
li
za
ti
o
n

Version

Baseline

Compact

+Stealing

(b) Thread Utilization. +Stealing values should be interpreted cautiously as the scheduling loop
spins, causing a nearly 100% thread utilization measurement.

Probe z=0 Probe z=0.25 Probe z=0.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1

10

Build z

S
p
ee
d
u
p

Version

Baseline

Compact

+Stealing

(c) Speedup relative to baseline

Figure 7.2: Comparison of joins on Zipf distributed build and probe relations for three
code versions. Probe relations have clustered order.

57



7 Evaluation

Version Max Speedup Mean Speedup Max Slowdown

Compact 18.9 4.02 1.12
+Stealing 39.3 9.32 1.14

Table 7.2: Summary of results for Zipf tests with clustered probe relation.

0.01

0.10

Baseline Compact +Stealing

E
x
ec
u
ti
o
n
T
im

e
[s
]

Figure 7.3: Comparison of execution times on TPC-H scale factor 10

setting. The TPC-H dataset is generated with a uniform process. Thus, the results are
not very skewed. Hence, our code does not show execution time improvements; we
include these results to show that they do not cause a significant slowdown.

In addition to the standard TPC-H benchmark, we include results on a related skewed
benchmark. Specifically, JCC is a benchmark that shares the schema of TPC-H but has
a skewed generation process. In addition to allowing skew with a single column, JCC
incorporates skew across correlated columns, making it more like real-world datasets.

We start with the TPC-H results and then show the JCC results.

TPC-H Results

In Figure 7.3, we show the distribution of the TPC-H queries on the three code versions
— Baseline, +Stealing, and Compact. The distributions are quite similar, with the +Stealing
version’s mean speedup being very close to 1. The summarized results are in Table 7.3.

58



7 Evaluation

Version Max Speedup Mean Speedup Max Slowdown

Compact 1.22 0.95 1.15
+Stealing 1.22 1.01 1.11

Table 7.3: Summary of results for TPC-H benchmark at scale factor 10

1e-3

1e-2

1e-1

1

1e1

1e2

Baseline Compact +Stealing

E
x
ec
u
ti
on

T
im

e
[s
]

Figure 7.4: Comparison of execution times on JCC scale factor 1

Version Max Speedup Mean Speedup Max Slowdown

Compact 1.74 0.98 1.21
+Stealing 1.55 1.02 1.19

Table 7.4: Summary of results for JCC benchmark at scale factor 1

59



7 Evaluation

JCC

In Figure 7.4, we show the distribution of the JCC query execution times on the three
code versions. The summarized results are in Table 7.4.

The distributions are again reasonably similar, with the test versions having minimal
speedup over the baseline. However, the test versions have a decent speedup on the
longest-running query. Unlike the other benchmarks, Compact outperforms +Stealing
in this case. Surprisingly, the methods proposed in this thesis do not perform better on
a skewed dataset like JCC. This warrants additional investigation. We now move on to
a dataset where the techniques of this thesis help greatly.

7.2.3 Cardinality Estimation Benchmark

In a recent paper on cardinality estimation, Chen et al. provided a large data set and
associated queries for testing cardinality estimation techniques [7]. The dataset relies on
six real-world datasets and adds associated queries. Due to its purpose for cardinality
estimation, the structure of the join graphs is complex and highly varied. A notable
feature is that the queries are classified as cyclic or acyclic. We will see that whether a
query is cyclic or acyclic has a significant effect on whether the methods proposed in
this thesis improve a given query’s execution time. Additionally, many of the datasets
have a graph structure; for example, the Epinions dataset consists of a node for each
user on the Epinions website and a directed edge between users and other users that
they trust. As discussed in Section 2.5.4, join queries over graph datasets are susceptible
to skew issues. This benchmark provides evidence that the techniques in this thesis
help mitigate the effects of skew in joins over graph-structured data.

Limiting Execution Time

The benchmark includes 3608 queries. We run each query 3 times per benchmark run
to obtain accurate timing. However, some queries exceed 10 minutes in execution time;
thus, running all queries is not feasible. Instead, we ran each query with a timeout of
90 seconds for all three repetitions. This results in a situation where the baseline may
time out on a query for which the test version did not, and vice versa. To rectify this,
we re-run the timed-out queries if another code version did not time out. Thus, the
baseline and test code versions have timing data for any query on which at least one
did not time out. This amounted to 3299 queries in total.

60



7 Evaluation

0.68

2.82

0.9

1e-2

1

1e2

Baseline Compact +Stealing

E
x
ec
u
ti
o
n
T
im

e
[s
]

Figure 7.5: Comparison of execution times on Cardinality Estimation benchmark

Results

In Figure 7.5, we show the execution times for the baseline and well as the two tested
code versions. Most of the queries are short, but a small number take much longer.
Note that the y-axis has a logarithmic scale, with the longest query time taking over
1000 seconds. The mean execution time is annotated in the plots, making the level of
skew more evident. For all three versions, the mean time is well above the median,
meaning execution times are highly skewed. Though most query times are similar
between versions, some very large Baseline execution times result in the Baseline mean
execution time being around three times that of the test versions.

We observe considerable differences in mean execution time if we plot cyclic and
acyclic queries separately as in Figure 7.6. For all three versions, acyclic queries take
longer than cyclic queries. All versions behave similarly for cyclic queries, and Baseline
mean execution time is the smallest of the three, though by a narrow margin. Whereas,
Baseline has a much larger mean execution time for acyclic queries. It is clear that both
test versions drastically reduce the mean execution time while making little change to
the median execution time.

We now compare the two test versions. In Figure 7.7, we see the speedup of each test
code version against the baseline, again separated by the workload type. The +Stealing
version performs well on cyclic and acyclic queries. It is slightly better than the baseline
on cyclic queries, whereas on acyclic queries, the mean speedup is 71%

Seeing the speedup for queries at a more granular level is helpful. In Figure 7.8,

61



7 Evaluation

0.77

4.16
1.11

0.510.35 0.53

Acyclic Cyclic

Baseline Compact +Stealing Baseline Compact +Stealing

1e-2

1

1e2

E
x
ec
u
ti
o
n
T
im

e
[s
]

Figure 7.6: Comparison of execution times on Cardinality Estimation benchmark, sepa-
rated by cyclic and acyclic queries.

we see the speedup over the baseline plotted against the baseline execution time.
Unsurprisingly, we see that in both test versions, the largest speedup values are on
queries with long baseline execution times. Most queries have a speedup of around 1 —
they are relatively unchanged between baseline and tests. A small fraction of queries
had very long baseline times, for which the test versions provided a large speedup.

We now focus on a subset of the CE benchmark. Figure 7.9 is similar to the previous
plot but is restricted to Epinions queries. The +Stealing version performs particularly
well on this data. Most notably, a group of queries with baseline times over 10 seconds
can be seen to have a larger speedup on +Stealing than on the Compact version. Every
one of these queries uses fewer than 3 of the 120 available threads in the baseline version.
The additional speedup of +Stealing over Compact is clearly due to the scheduling of
sub-morsels. Though the two test versions have similar results, it is clear that the
combination of compaction and Sub-morsel Stealing is more effective than compaction
on its own.

Finally, we end this section by summarizing the speedup of the two test versions in
Table 7.5. We see that Compact has a mean speedup over Baseline and that +Stealing is a
significant improvement over Compact. This is particularly evident in the maximum and
mean speedups. Given the variety of queries included in the Cardinality Estimation
benchmark, this sizable speedup shows that the techniques of the thesis are worthwhile
optimizations for a database system.

In the next section, we discuss the results at a high level and describe some areas for
future improvement.

62



7 Evaluation

Version Max Speedup Mean Speedup Max Slowdown

Compact 39.4 1.13 3.64
+Stealing 87.8 1.49 4.39

Table 7.5: Summary of results for Cardinality Estimation benchmark

1.71
1.26 1.09

0.9

Acyclic Cyclic

Compact +Stealing Compact +Stealing

1

10

100

S
p
ee
d
u
p

Figure 7.7: Speedup over baseline on Cardinality Estimation benchmark, separated by
cyclic and acyclic queries.

63



7 Evaluation

+Stealing Compact

1e-3 1e-2 1e-1 1 1e1 1e2 1e3 1e-3 1e-2 1e-1 1 1e1 1e2 1e3

1

10

100

Baseline Execution Time [s]

S
p
ee
d
u
p Workload

Acyclic

Cyclic

Figure 7.8: Speedup versus Baseline execution time for Cardinality Estimation bench-
mark.

+Stealing Compact

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00

1

10

Baseline Execution Time [s]

S
p
ee
d
u
p Workload

Acyclic

Cyclic

Figure 7.9: Speedup versus Baseline execution time for Epinions queries on Cardinality
Estimation benchmark.

64



8 Discussion

In the previous section, we tested the two techniques proposed in this thesis on
various benchmarks. We showed that these methods provide significant performance
improvements on skewed workloads. We now discuss these results in the broader
context and evaluate the applicability of these techniques. Additionally, we discuss
areas for future improvements.

Node Compaction

In the previous section, we tested array Node Compaction with and without Sub-
morsel Stealing. Though for most benchmarks, the version with Sub-morsel Stealing
was faster, it is clear that Node Compaction has significant performance improvements
on its own. This is notable, as array Node Compaction is much simpler to implement
than Sub-morsel Stealing. Node Compaction simply involves the addition of a new
hash join operator; Sub-morsel Stealing requires modification of the morsel scheduling
algorithm. For this reason, Node Compaction is likely more applicable to other in-
memory database systems.

Sub-Morsel Stealing

Benchmark results show that combining the techniques of compaction and Sub-morsel
Stealing is more effective than using compaction alone. Though this fact is not surpris-
ing, we were surprised by the amount of improvement caused by Sub-morsel Stealing.
Previously, we believed that Sub-morsel Stealing would provide value in relatively rare
circumstances. For example, when the probe side has skewed keys clustered in the
base relation. This situation seems unlikely to occur frequently in real-world databases.
Nevertheless, since such situations result in very long execution times, we still felt it
worthwhile to implement Sub-morsel Stealing. The results of the Cardinality Estimation
benchmark suggest that this situation is far more likely to occur than we had previously
thought. While the queries on this dataset are synthetic, they are diverse in structure,
and the underlying data comes from real-world datasets.

This suggests that improvements to the Sub-morsel Stealing algorithm could improve
overall performance. There are several areas where this technique can be improved.

65



8 Discussion

Stealing a sub-morsel currently involves copying the published probe tuple. Though
this performs well on the provided benchmarks, it could be problematic on larger
tuples. Additionally, since a read-lock must be held while copying, this could increase
contention. A potential improvement is to replace the copied tuple with a reference
counting pointer. This would allow for cheap copying of the published probe tuple
while keeping space usage minimal.

A more important improvement involves the sub-morsel scheduling loop. The
current implementation continuously spins, looking for sub-morsels until all regular
morsels are exhausted. This potentially wastes resources as other threads cannot use
the spinning thread, whether or not it finds sub-morsels. Rather than spinning, idle
threads should use condition variables to sleep until a sub-morsel is available or all
regular morsels are completed. This is a necessary improvement before Sub-morsel
Stealing can be implemented in a production system.

Finally, we discuss a more high-level improvement to the Sub-morsel Stealing algo-
rithm. Section 5.1.1 described an alternative means of defining sub-morsels. In this
technique, a sub-morsel would consist of a sub-range of a regular morsel. We chose
not to implement this method as we did not believe it would handle situations with
very high skew. Nevertheless, this technique would likely perform better on data with
relatively low skew than the Sub-morsel Stealing algorithm implemented in this thesis.
Given the significant performance benefit of the Sub-morsel Stealing algorithm, we
believe this other technique deserves further investigation.

Handling Non-Skewed Data

A primary problem in this thesis was finding how to improve join performance on
skewed data while not reducing performance on uniform data. Unfortunately, we
did not completely achieve this goal. On the TPC-H and Zipf benchmarks with low
Z values, we saw some queries where +Stealing was slower than the baseline. Given
the significant improvements on skewed data, we believe a small slowdown on some
queries is an acceptable tradeoff.

We found that any extra work to optimize a join for skewed data will slow down the
algorithm on uniform data. Thus, a primary part of our method involves limiting the
amount of additional work needed on uniform data. For example, consider when a
previously unseen key is inserted in the hash table. The baseline algorithm will insert
the tuple directly in the global hash table. Our method will check a single bit in the
skewed bit set, then insert in the global hash table, then potentially set the bit in the bit
set.

There are other ways to improve join performance on uniform data. As described in
Chapter 6, we attempted to use sketches to estimate the skewness of relations before

66



8 Discussion

code generation. These sketches estimate various statistics about relations. We selected
bounds for the estimated statistics and only enabled the skew optimization techniques
if the estimates exceeded these bounds. Unfortunately, we found no bound values
with a high enough accuracy to be useful. We did not systematically search for bound
values but selected the values heuristically. A more systematic approach might find
more effective boundary parameters.

This concludes the discussion section of this thesis. In the final chapter, we summarize
the work and reach conclusions about the techniques developed.

67



9 Conclusion

This thesis introduces two techniques for improving the execution time of in-memory
hash joins in morsel-driven systems. These techniques mitigate two issues when the
data is highly skewed — poor cache performance and poor thread utilization.

Hash tables often use linked lists to hold the tuples in a hash bucket. Because linked
list nodes are not adjacent in memory, they tend to have poor cache performance. This
problem is exacerbated by skew keys, as a skewed build side will result in a long
collision list, and a skewed probe side will result in repeated collision list iteration.

To deal with this issue, we introduced Node Compaction. This involves copying
sections of collision linked lists into compact nodes containing arrays of tuples. This
method results in a significant reduction in the cache miss rate when joining many
skewed relations.

Skewed build keys can also result in poor thread utilization. This can occur if a probe
tuple matches a significant number of build tuples while other probe tuples have far
fewer matches. The thread joining the tuple with many matches will take longer than
other threads to complete its work. Other threads may need to wait for the lagging
thread, resulting in increased execution time and poor thread utilization. We solve this
issue using a technique called Sub-morsel Stealing. This method breaks long collision
lists into chunks and allows multiple threads to join a single probe tuple with different
parts of the collision list. An idle thread can steal a chunk and perform the join on this
chunk. This allows the work to be more evenly distributed between threads, improving
thread utilization and decreasing execution time.

We implemented both of these techniques in the Umbra database system. We then
ran various benchmarks to compare our method with the baseline Umbra version. Our
method has a mean speedup over all TPC-H queries of 1% and a maximum slowdown
of 11%. This is unsurprising, as our technique is designed to handle highly skewed
data rather than uniform data like TPC-H. Our techniques significantly improve over
the baseline on a large subset of the Cardinality Estimation benchmark queries [7].
On this benchmark, our methods have an average speedup of 49%, with one query
having a speedup of over 87x. Given the limited downside on uniform data and the
significant improvements on skewed data, the techniques developed in this thesis
have the potential to improve the performance of hash join operators in main-memory
morsel-driven database systems.

68



9 Conclusion

69



List of Figures

1.1 Illustration of a join between two relations with uniformly distributed
keys. The output size is small and evenly distributed between morsels. 2

1.2 Illustration of a join between highly skewed build and probe relations.
Due to the skew, the output size is large, though still evenly distributed
between morsels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Illustration of a join between skewed build relation and low-skew probe
relation. The output is not well distributed, with one morsel containing
most of the results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Evaluation of baseline Umbra hash join on Zipf distributed build and
probe relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Comparison of join with probe relation clustered by key versus randomly
shuffled by key. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Collision list node structure for different versions of the hash table. . . . 27
4.2 An example of the hash table insertion algorithm. The global hash table

and the skew bit set are pictured above. Below, the thread-local skew
table holds the tuples with potentially skewed hash keys. A description
of the numbered steps is provided Section 4.3.3. . . . . . . . . . . . . . . 33

4.3 Insertion algorithm example continued . . . . . . . . . . . . . . . . . . . 34

5.1 Structure of collision list with multiple node build chunks. . . . . . . . . 38
5.2 Illustration of sub-morsel stealing algorithm. . . . . . . . . . . . . . . . . 46

6.1 Comparison of speedup between NoBitset, which applies skew optimiza-
tion techniques to all keys, and +Stealing, which only applies techniques
to suspected skewed keys. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Comparison of stage execution time between NoBitset, which applies
skew optimization techniques to all keys, and +Stealing, which only
applies techniques to suspected skewed keys. . . . . . . . . . . . . . . . 51

7.1 Comparison of joins on Zipf distributed build and probe relations for
three code versions. Probe relations have shuffled order. . . . . . . . . . 55

70



List of Figures

7.2 Comparison of joins on Zipf distributed build and probe relations for
three code versions. Probe relations have clustered order. . . . . . . . . . 57

7.3 Comparison of execution times on TPC-H scale factor 10 . . . . . . . . . 58
7.4 Comparison of execution times on JCC scale factor 1 . . . . . . . . . . . 59
7.5 Comparison of execution times on Cardinality Estimation benchmark . 61
7.6 Comparison of execution times on Cardinality Estimation benchmark,

separated by cyclic and acyclic queries. . . . . . . . . . . . . . . . . . . . 62
7.7 Speedup over baseline on Cardinality Estimation benchmark, separated

by cyclic and acyclic queries. . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.8 Speedup versus Baseline execution time for Cardinality Estimation

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.9 Speedup versus Baseline execution time for Epinions queries on Cardi-

nality Estimation benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . 64

71



List of Tables

7.1 Summary of results for Zipf tests with shuffled probe relation . . . . . . 56
7.2 Summary of results for Zipf tests with clustered probe relation. . . . . . 58
7.3 Summary of results for TPC-H benchmark at scale factor 10 . . . . . . . 59
7.4 Summary of results for JCC benchmark at scale factor 1 . . . . . . . . . 59
7.5 Summary of results for Cardinality Estimation benchmark . . . . . . . . 63

72



Bibliography

[1] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of Approximating
the Frequency Moments. In: STOC. 1996, pp. 20–29.

[2] P. Bagwell. Fast Functional Lists, Hash-Lists, Deques, and Variable Length Ar-
rays. Technical Report LAMP-REPORT-2002-003. Ecole polytechnique fédérale de
Lausanne, 2002.

[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory
joins: sort vs. hash revisited. In: PVLDB. Vol. 7(1). 2013.

[4] M. Bandle, J. Giceva, and T. Neumann. To Partition, or Not to Partition, That is
the Join Question in a Real System. In: SIGMOD. 2021, pp. 168–180.

[5] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In: SIGMOD. 2011, pp. 37–48.

[6] P. Boncz, A.-C. Anatiotis, and S. Kläbe. JCC-H: Adding Join Crossing Correlations
with Skew to TPC-H. In: Performance Evaluation and Benchmarking for the Analytics
Era, TPCTC. 2018, pp. 103–119.

[7] J. Chen, Y. Huang, M. Wang, S. Salihoglu, and K. Salem. Accurate summary-
based cardinality estimation through the lens of cardinality estimation graphs. In:
PVLDB. Vol. 15(8). 2022, pp. 1533–1545.

[8] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. In: Commu-
nications of the ACM. Vol. 13(6). 1970.

[9] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-Min Sketch and Its Applications. In: Journal of Algorithms. Vol. 55(1). 2005,
pp. 58–75.

[10] J. Dean. Software engineering advice from building large-scale distributed sys-
tems. http://research.google.com/people/jeff/stanford-295-talk.pdf.
Accessed: 2023–11-10. 2007.

[11] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical Skew
Handling in Parallel Joins. In: VLDB. 1992, pp. 27–40.

73

http://research.google.com/people/jeff/stanford-295-talk.pdf


Bibliography

[12] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the analysis
of a near-optimal cardinality estimation algorithm. In: Discrete Mathematics &
Theoretical Computer Science. 2007.

[13] T. Goetghebuer-Planchon. Tessil/hopscotch-map: A fast and memory efficient
hash map. Accessed: 2023-11-12. 2022. url: https://github.com/Tessil/
hopscotch-map.

[14] G. Graefe. Volcano-an extensible and parallel query evaluation system. In: IEEE
Transactions on Knowledge and Data Engineering. Vol. 6(1). 1994, pp. 120–135.

[15] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly gen-
erating billion-record synthetic databases. In: SIGMOD. Vol. 23(2). 1994, pp. 243–
252.

[16] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of Hash to Data Base
Machine and Its Architecture. In: New Gen. Comput. Vol. 1(1). 1983, pp. 63–74.

[17] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: a
NUMA-aware query evaluation framework for the many-core age. In: SIGMOD.
2014, pp. 743–754.

[18] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on modern
hardware. In: IEEE Transactions on Knowledge and Data Engineering. Vol. 14(4). 2002,
pp. 709–730.

[19] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent
and Top-k Elements in Data Streams. In: ICDT. 2005, pp. 398–412.

[20] R. Morris. Counting large numbers of events in small registers. In: vol. 21(10).
1978, pp. 840–842.

[21] T. Neumann. Efficiently compiling efficient query plans for modern hardware. In:
PVLDB. Vol. 4(9). 2011, pp. 539–550.

[22] T. Neumann and M. Freitag. Umbra: A Disk-Based System with In-Memory
Performance. In: CIDR. 2020.

[23] H. Q. Ngo, C. Ré, and A. Rudra. Skew Strikes Back: New Developments in the
Theory of Join Algorithms. In: SIGMOD Rec. Vol. 42(4). 2014, pp. 5–16.

[24] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of hashing
methods and its implications on query processing. In: 9(3) (2015), pp. 96–107.

[25] W. Rodiger, S. Idicula, A. Kemper, and T. Neumann. Flow-Join: Adaptive skew
handling for distributed joins over high-speed networks. In: ICDE. 2016, pp. 1194–
1205.

74

https://github.com/Tessil/hopscotch-map
https://github.com/Tessil/hopscotch-map


Bibliography

[26] D. A. Schneider and D. J. DeWitt. A Performance Evaluation of Four Parallel Join
Algorithms in a Shared-Nothing Multiprocessor Environment. In: SIGMOD. 1989,
pp. 110–121.

[27] M. H. Selmi. Evaluation of Adaptive Join Indexes. MA thesis. University of
Augsburg, Technical University of Munich, Ludwig Maximilian University, 2023.

[28] Z. Shao, J. H. Reppy, and A. W. Appel. Unrolling lists. In: Conference on LISP and
Functional Programming. 1994, pp. 185–195.

[29] B. Wagner, A. Kohn, and T. Neumann. Self-Tuning Query Scheduling for Analyti-
cal Workloads. In: SIGMOD. 2021, pp. 1879–1891.

[30] C. B. Walton, A. G. Dale, and R. M. Jenevein. A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins. In: VLDB. 1991, pp. 537–548.

75


	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Setting
	Hash Joins
	Umbra's Hash Join

	Execution Model
	Interpreted / Pull-based
	Compiled / Push-based

	Parallelism
	Volcano-style Parallelism
	Morsel-Driven Parallelism

	The Problem with Skewed Data
	Poor Cache Performance
	Poor Thread Utilization

	Prevalence of Skewed Queries
	Uniform Data
	Key / Foreign Key Joins
	Foreign Key / Foreign Key Joins
	Graph Datasets


	Related Works
	Hash Joins
	Skew-Optimized Hash Joins
	Skew Recognition Techniques
	Linked List Optimization

	Improving Cache Performance
	Linked Lists for Collision Resolution
	Effects of Skew on Collision Lists

	Improving Cache Locality
	Naive Collision Array
	Array Nodes

	Array Node Construction
	Restricting Compaction to Skewed Keys
	Local Aggregation
	Insertion Algorithm Example


	Improving Thread Utilization
	Morsel Splitting
	Defining Sub-Morsels

	Scheduling
	Picking Sub-Morsels
	Running Stolen Sub-Morsels
	Probing Sub-Morsels

	Concurrency

	Selecting Join Algorithms
	Compile-time vs. Runtime
	Compile-time techniques
	Distinct Count
	Self Join Size
	Effectiveness of Compile-time Sketches

	Probabilistic Counting

	Evaluation
	System Setup
	System for Cardinality Estimation Benchmark
	System for other Benchmarks

	Benchmarks
	Zipfian Micro-benchmarks
	TPC-H & JCC Benchmarks
	Cardinality Estimation Benchmark


	Discussion
	Conclusion
	List of Figures
	List of Tables
	Bibliography

