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ABSTRACT
Hash joins are the dominant join algorithm in modern database
systems. Despite their high performance, they are not without
weaknesses. In particular, duplicate key values can significantly
degrade their performance. A recent paper proposed the 3D hash
join, which mitigates the issue of duplicate keys. This algorithm
groups tuples that share keys into sub-lists within each hash table
collision list. As this technique shows promise, we investigate it in
a realistic join operator. Specifically, we combine the 3D algorithm
with a hash join based on that of the Umbra database.

Unfortunately, the initial combination of these systems was not
an improvement over the Umbra hash join. However, by estimating
the number of unique keys and setting the hash directory size based
on this value, we achieved up to a 77% speedup over the baseline.
Based on these results, we also present a technique for optimizing
the hash directory size in a standard chained hash join. This method
produces up to a 45% speedup over the baseline while reducing
hash directory memory usage by 70%. In this paper, we describe
the implementation of both techniques and show that they are
potentially useful tools for mitigating the effects of duplicate keys
in hash joins.

1 INTRODUCTION
Despite being the most performant equi-join implementation [1],
hash joins are relatively simple. The tuples of one relation are
inserted into a hash table using the join key as the hash table
key; this relation is denoted as the build relation. Then the second
relation, known as the probe relation, is traversed. For each tuple
in the probe relation, tuples with matching keys from the build
relation are extracted from the hash table. For every match, the
build and probe tuples are emitted to the output.

Much of the complexity of a hash join is within the hash table,
so we start with a small introduction to hash table implementation.

There are several types of hash tables, but all share a primary
part—the hash directory. This is simply an array containing either
key/value pairs or pointers to key/value pairs. The pairs or pointers
are placed at specific offsets in the array based on their hash value.
Unfortunately, there is a problem with this scheme: multiple items
may produce the same hash value and thus be located at the same
offset. This is known as a collision. Generally, there are two ways
of handling collisions: open-addressing, and separate chaining. We
will only look into separate chaining here, as it is frequently used
in database systems, such as Umbra [5].

In a separate chaining hash table, key/value pairs are stored in a
linked list accessible from the hash directory. An example of such a
linked list can be seen in the fig. 1a, which shows the directory and
node structure of the Umbra hash table. In this scheme, pairs with
the same key are stored in the same linked list. Likewise, different
keys with the same hash value are stored in the same linked list.
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Figure 1: Hash Directory and Node structure of different
implementations. Each contains the same data: a red key
with 3 tuples and a blue key with 2 tuples.

Storing duplicates and collisions in a linked list is convenient, but
has a downside—linked list traversal can be expensive. If the linked
list nodes are not cached, dereferencing the next pointers requires
expensive random-access memory reads. This issue is particularly
apparent when there are both collisions and duplicates. Consider
searching for all matches in a bucket that contains many duplicates
of a different key. This entails the traversal of an arbitrarily long
linked list, resulting in an 𝑂 (𝑛) lookup complexity.

A recent paper by Flachs et al. [3] proposed a scheme, known as
the 3D Hash Join, to help rectify this issue. Instead of a single linked
list of values, their algorithm groups tuples that share keys into
separate sub-lists. The structure of these linked lists can be seen in
fig. 1b. The benefit of this design is that the main list only contains
nodes for the unique keys which collide in a given bucket. On
average very few keys will collide per bucket, so this top-level list
will be quite short. This design significantly reduces the number of
linked list nodes that must be traversed when a hash table contains
many duplicate keys.



In our paper, we investigate how to reduce the cost of duplicates
in a realistic hash join. Given the results of [3], we start by adapting
the 3D Hash Join technique to a highly performant, parallel join
implementation. We base our hash join on that of the Umbra data-
base system [5, 7], using its lock-free insertion, per-bucket Bloom
filters, and morsel-driven parallelism. Integrating the 3D algorithm
with these features was a main contribution to this work. We show
that, after several modifications, the 3D algorithm can increase the
speed of an already performant join implementation.

Additionally, we introduce a method for selecting the optimal
hash directory size in a standard chained hash join implementation.
Using this technique, we can improve the performance of joins with
duplicate keys, while significantly reducing memory usage.

The remainder of this paper proceeds as follows: In Section
2 we will discuss the Umbra and 3D Hash Joins, as well as the
problem of joining with duplicate keys. Then in Section 3, we
describe our implementation, in particular the 3D+Umbra parallel
insertion algorithm. Following this, in Section 4, we evaluate the
performance of our implementation and show how to optimize
the hash directory size. Finally, we cover related works and our
conclusions, in Sections 5 and 6 respectively.

2 BACKGROUND
This paper is on practical techniques for improving state-of-the-art
hash joins. As such, our baseline hash join implementation must
be highly performant; we base it on the hash join of Umbra [5]. We
start this section by describing several novel optimizations in the
Umbra hash join and hash table. Despite these optimizations, like
all separate chaining hash tables, the Umbra hash table is subject
to the issues of duplicate keys. After describing this issue in the
depth, we delve into the 3D Hash Join [3] which provides a means
to mitigate this problem.

2.1 Umbra Hash Join
Umbra uses a Hash Join with a separate chaining hash table [2, 5, 7].
The joinworks as follows. The build side of the query ismaterialized,
that is, it is spooled out in memory. During materialization, the
tuples are padded with extra space for the key, hash value, and a
pointer. This pointer is used to build the collision list.

After materializing the build side tuples, the hash directory is
allocated; it consists of an array of pointers. This step is deferred
until after materialization, so that the number of build tuples is
known, and the hash directory can be sized accordingly. The hash
directory size is set to a value slightly greater than the number of
build tuples.

At this point, the hash table is constructed. The materialized
tuples are traversed and inserted into the table. This happens in
parallel, using as many threads as are available. For a given tuple,
its key is hashed and the hash value is stored in the pre-allocated
spot adjacent to the tuple. Then the hash value is mapped to a spot
in the hash directory.

2.1.1 Hash Value Range Mapping. The hash value must be trans-
lated to an index in the hash directory. This entails mapping the
64-bit hash value into the range [0, 𝑛) for a hash directory of size
n. Traditionally, this is done by dividing the hash value by n and
using the remainder as the bucket index; but this method is quite

slow. Hence Umbra uses a well-known optimization: right shifting
by k bits is equivalent to taking the remainder when dividing by
2𝑘 . If the hash directory is 2𝑘 for some 𝑘 , the expensive remainder
operation can be replaced with a cheap shift operation. Of course,
this approach has the downside that the size of the hash directory
must be a power of 2, potentially wasting a great deal of memory.

Another efficient range mapping approach is that of [6], which
requires only a single multiplication and shift operation. We use
this technique throughout much of the paper, as it allows arbitrary
hash directory sizes.

2.1.2 Parallel Insert. Once the hash value is mapped to a specific
bucket in the hash directory, it is inserted at the front of the bucket’s
collision list. This entails 1) setting the next pointer, which was
allocated adjacent to the tuple during materialization, to the current
first node of the collision list, and 2) setting the pointer in the
hash table bucket to the new node. As the table is built in parallel,
these updates must be thread-safe. Thus step 2 is performed using
an atomic compare and swap instruction, which verifies that the
current front of collision list has not changed since setting it to
next in step 1. Using fine-grained atomic instructions for insertion
allows a high degree of parallelism.

2.1.3 Bloom Filter Tagged Pointers. The keys in each collision list
are maintained in a Bloom filter. During the probe stage, if a key
is absent from the Bloom filter, the collision list does not need to
be traversed. The Bloom filters consist of 16 bits stored in unused
bits of the pointers in the hash directory. Since the hash directory
pointers are updated with atomic compare and swap instructions,
the Bloom filters are likewise updated atomically during linked list
insertion.

2.1.4 Probe Stage. The probe stage iterates over the probe tuples,
hashes their keys, and looks up keys in the hash table. Before
iterating down a collision chain, the probe stage checks the Bloom
filter in the pointer at the head of the list. If the hash is not present
in the Bloom filter, the key cannot be present in the collision list,
and the expense of iteration can be avoided. If the hash is in the
Bloom filter, the collision list is traversed to find any matches. If it
is known that the build side has unique keys, the list only needs
to be traversed until the first match; otherwise, the list must be
traversed until the end is reached. For each match in the collision
list, the build tuple and probe tuple are emitted to the output.

2.2 Duplicates in Hash Joins
Despite the effectiveness of hash joins, they have a weakness—build
side duplicates. Tuples on the build side with the same key will be
hashed to the same bucket and added to the same collision list. If the
collision list only contains tuples for a single key, this does not pose
a problem. This is because for a given probe key all matching build
tuples must be emitted, thus the list of tuples with duplicate keys
must always be traversed. But if a collision list contains tuples for
more than one key, there is a potential for inefficiency. For example,
consider a collision list with two keys, one with a single tuple and
one with many associated tuples. When probing for the single tuple,
we need to traverse an arbitrary number of unrelated tuples. The
linked list traversal consists of pointer dereferences—expensive
operations if the build side does not fit in the cache.
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This can cause a significant slowdown, thus finding ways to deal
with duplicates could improve hash join performance.

2.3 3D Hash Join
A recent paper by Flachs et al. [3] proposed an optimization to help
mitigate the negative effects of duplicate keys in hash joins. Rather
than using a single linked list per hash bucket, they propose a list
of sub-lists, where each sub-list consists of all tuples which share
a given key. Thus the main collision list has a length equal to the
number of unique keys. With this structure, when more than one
keys collide in the same hash bucket, probes with one key can avoid
iterating past multiple tuples of a different key.

2.3.1 3D Hash Directory & Node Structure. A diagram showing
the structure of the 3D hash table can be seen in fig. 1b. It shows
a single collision list with five tuples, but only two unique keys.
The main list thus has two main nodes, one with two tuples in its
sub-list and one with three tuples.

Unlike Umbra, the 3D hash directory consists of the first node
of each collision list, rather than pointers to collision lists. This
is possible because 3D nodes contain pointers to their associated
tuples, rather than the tuples themselves. The main nodes along the
collision list require two pointers, one to the next node in the main
collision list, and one to the sub-list of tuples sharing the same key.
Nodes in the sub-list only need one pointer to the next node in the
sub-list. Additionally, since the tuples in a sub-list share the same
key, the associated hash value will be equal for all duplicate nodes.
Thus, to save space, hash values are not included in sub-nodes.

The key value is not stored in the node, as it can be checked
through the tuple pointer. With 64-bit hash values, it is rare that two
different keys share the same hash value, thus hash value equality
can be used as a proxy for key equality. Using hash equality means
that tuples in a given sub-list share the same hash value, but may
in fact have different key values. Of course, the actual keys must
be checked for equality when emitting tuples. Though this change
does make the 3D collision lists less effective, it is more efficient
overall, as operations on 64-bit hash values are likely cheaper than
on arbitrary key types. We adopt the same behavior in all hash
join implementations in this paper, and use the terms hash and key
largely interchangeably.

2.3.2 Insertion. After finding the correct hash bucket, the 3D in-
sertion algorithm traverses the main collision list searching for a
main node with a matching hash value. If such a node is found,
the new tuple is inserted in the sub-chain of this main node. If no
matching main node is found, the new tuple is inserted as a main
node at the end of the main collision list.

The need to traverse the main collision list when inserting new
keys is a potential downside of the 3D algorithm. Umbra’s hash
table insertion algorithm can insert at the beginning of the list
since new tuples do not need to be aggregated with existing tuples
sharing the same key. Though the main collision list should be
short, this additional iteration has a non-zero cost.

2.3.3 Probe. The probe stage is where the benefits of the 3D algo-
rithm become apparent. The main collision list will be quite short,
so traversing it during probe can be a significant speedup compared
to a standard collision list containing lots of tuples. Additionally,

once a matching main node is found, its sub-nodes can be easily
emitted to the output without the need to filter them from other
non-matching nodes.

2.3.4 Deferred Unnesting. In addition to reducing iteration during
probe, the 3D hash table design allows another optimization called
deferred unnesting. When there are multiple joins on the same key,
deferred unnesting allows joins higher in the join tree to operate on
an iterator of tuples rather than tuples themselves. Such an iterator
is simply a sub-chain of tuples from a collision list lower down in
the join tree. Though this technique shows promise, we will not
be investigating it in this paper. We will be focusing on the 3D
hash table’s ability to reduce the cost of iterating over collision lists
containing duplicate keys.

3 COMBINING UMBRA & 3D
This section is the main contribution of our paper. Here we show
how the Umbra and 3D algorithms described in the previous section
can be combined. We start by describing the hash directory and
node structure of our 3D+Umbra algorithm. Following this, we
explain our insertion algorithm and argue that it is correct and
thread-safe. Then we show how Umbra’s Bloom filters and atomic
pointers increase the efficiency of the 3D algorithm. Lastly, we
explain the need to estimate the number of unique keys in a given
join, and describe how the HyperLogLog algorithm was used to
perform this estimation efficiently.

3.1 Hash Directory & Node Structure
Combining the techniques used by Umbra with the 3D hash join
requires a number of modifications to the 3D node and directory
structure. Umbra uses pointers as the values in the hash directory,
whereas 3D uses inline hash table nodes. We use a directory of
pointers, as we do not know the number of build tuples while
materializing, thus cannot allocate a contiguous piece of memory
of the required size.

Similarly, the 3D hash table is able to save space by only storing
a duplicate hash once at the head of its sub-list. All subsequent
tuples for this hash are stored in smaller nodes which only need
space for the tuple and the sub-list pointer. But before the table
is built, it is not known which of the duplicate tuples for a given
hash value will be inserted first. Thus we do not know which of
the tuples will be in the main collision list and will thus need space
for a main node’s hash value and next pointer. Unfortunately, this
means every node must have enough space to be a main node. An
example of this can be seen in fig. 1c, where every sub-node has
unused space for a hash value and next pointer.

3.2 Insertion Algorithm
The insertion algorithm can be seen in algorithm 1. We start by
converting the hash value into a hash directory index and getting
the associated pointer from the hash directory. In line 5, we check
the Bloom filter in the bucket pointer to see if the hash may already
be present in the bucket. If the hash is not present, we attempt to
atomically insert the node at the head of the linked list, in line 8. We
simultaneously update the Bloom filter as it is part of the pointer.
If the insert succeeds, we are done.



Algorithm 1 Umbra+3d Hash Table Insertion

1 insertNode(hash , node):

2 slot := table[hash % size(table)]

3 currSlot := slot

4

5 while hash not in bloomTag(slot):

6 newSlot := node | bloomTag(slot) | bloomUpdate(hash)

7 // insert start main chain

8 if slot.CAS(currSlot , newSlot):

9 node ->next := ptr(currSlot)

10 return

11

12 prev := null

13 curr := ptr(currSlot)

14 while True:

15 while curr not null:

16 if curr ->hash == hash:

17 // insert in sub -chain

18 node ->sub := curr ->sub.exchange(node)

19 return

20 prev := curr

21 curr := curr ->next

22

23 // insert end main chain

24 if prev ->next.CAS(curr , node):

25 return

Otherwise, the compare and swap failed due to another node
being inserted first. This node may have had the same hash value
or a different hash value, so we check the Bloom filter again. If
our key is still absent, we know it was a different node that was
inserted and try again until we either succeed, or our key becomes
present in the Bloom filter (lines 5-10).

If the key is in the Bloom filter, either the key is really present
in the bucket, or there was a Bloom filter false positive. Either way,
we must iterate until we find a node with a matching hash value, or
reach the end of the bucket list. Lines 14-25 consist of this collision
list traversal. If we find a node with a matching hash value, we
insert at the head of this node’s sub-chain in line 18.

Otherwise, we iterate to the end of the main collision list and
append a new main node at the end of the list using an atomic
compare and swap in line 24. This append could fail if another node
was appended before our new node was appended. In this case, we
repeat lines 14-25, until we find a node with a matching hash value
or append at the end of the main list.

3.2.1 Benefits of Bloom filter & Atomic Pointers. The Bloom filters
provide an opportunity to improve an area of inefficiency in the
3D algorithm. On every insertion, the main collision list must be
traversed until a main node with the matching key is found, or the
end of the collision list is reached. This is a downside of 3D, as with
a standard hash table a new node can be inserted at the head.

The Bloom filter allows us to avoid this traversal in most cases.
If the key is not present in the Bloom filter, we know that there is
no main node in the collision list with the same hash. Hence we can
insert at the beginning of the list. This relies on the fact that the
Bloom filter is updated with a compare and swap along with the
rest of the containing pointer. If another node with the same hash
has been added between checking the Bloom filter and inserting at
the head, the CAS instruction would fail.

It is fortuitous that the Bloom filter is updated atomically with
the pointer, as otherwise, insertion at the front of the collision list
would not be safe.

3.3 Counting Unique Keys
It is useful to know the number of unique keys in the build relation,
as this value is used to determine the appropriate hash directory
size. Unfortunately, this value may not be available. In a realistic
database system, if the build relation is a base table we may know
the actual or estimated number of unique keys. If the build relation
is the result of a query, we may still have an estimate of the number
of unique keys, but the quality of this estimate could be quite poor.

As we cannot assume that we know the number of unique keys,
the 3D+Umbra join algorithm must find this value. But determining
the exact number of unique keys in the build relation would require
either building a hash set or a sorted list of the keys. Clearly, either
option is far too expensive.

Thankfully, the HyperLogLog algorithm of Flajolet [4] provides a
fast way to estimate the number of unique keys while using a small,
constant amount of space. Thus we maintain a local HyperLogLog
counter in every thread during materialization. We also hash the
keys during materialization so the hash value can be used in the
HyperLogLog algorithm. The hash is stored in the materialized
tuple, to be used later during the build phase. At the end of mate-
rialization, the HyperLogLog counters can be merged and a final
distinct key count estimate is produced.

4 EVALUATION
In this section we cover how our 3D+Umbra algorithm was evalu-
ated against the Umbra-style baseline. We start with the experimen-
tal structure, which we base on that of [3]. From these experiments,
we discovered that the initial hash directory size was too large.
Thus in the next section we describe how we rectified this issue
by setting the hash directory size from the number of unique keys.
Following this is another main contribution of this paper. Here
we show how we optimized the hash directory size of the base-
line Umbra-style algorithm and increased its performance while
significantly reducing memory usage.

4.1 Experiment Structure
For ease of comparability, we base our experimental evaluation on
that of [3]. Though they used both foreign key and many-to-many
joins, we restrict our tests to foreign key joins.

4.1.1 Relation Size. The 3D Hash Join was evaluated using various
sizes of key and foreign key relations. Each relation was varied
between 210 and 225 elements.

4.1.2 Duplicates. The number of duplicate keys was controlled
through a foreign key scale parameter which specifies from what
subset of the key relation, the foreign keys are sampled. For a key
relation of size |𝑅 |, and foreign key scale parameter 𝑡 , the first |𝑅 |

2𝑡
elements of R are sampled to obtain the foreign keys. At t-scale 0
the entire key relation is sampled, at t-scale 1 half is sampled, at
t-scale 2 a quarter is sampled, etc. The original sampling was done
using both uniform and Zipf distributions, though we restrict our
tests to uniform sampling.
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(a) 3D+Umbra with a total key-based directory size versus baseline. This
version performs poorly, with a maximum srd of only 0.13 and a mini-
mum of -0.51.
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(b) 3D+Umbra with a unique key-based directory size versus baseline.
This version has a better maximum srd of 0.77, but still a minimum of
-0.37.
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(c) Umbra with a unique/total key-based directory size versus baseline.
Though the maximum srd is only 0.43, the minimum is decent, with a
value of only -0.14.

Figure 2: Comparison of join implementations with a base-
line consisting of an Umbra-style join implementation using
a total key-based directory size.

4.1.3 Relation Order. In the 3D paper, tests were run with both the
key and foreign key relations being the build side of the join. Since
both relations varied over the range of relations size, this means
that the larger relation was tested as the build side. In contrast, we
only consider the smaller relation for the build side. This is due to
a pragmatic concern—before a join we may not know if one of the
sides of the join has duplicate values. Since we cannot assume that
we know, it is safer to always use the smaller relation for the build
side.

4.1.4 Early Termination. Additionally, we only consider the foreign
key relation, being the relation with duplicates, for the build side.
This is based on the assumption that a regular hash joinwill perform
better when the build side does not contain duplicates. If the build
side has no duplicates, we can likely infer this fact, in which case
we can stop probing after a single match. The tests in fig. 4 of
[3] support this viewpoint, thus we chose to focus our testing on
foreign key build sides.

4.1.5 Performance Metric. We also adopt the performance metric
used by [3], the symmetric relative difference of join times. This
function is defined as 𝑠𝑟𝑑 (𝑏, 𝑡) = 𝑏−𝑡

𝑚𝑖𝑛 (𝑏, 𝑡 ) , where 𝑏 is the join time
of the baseline implementation, and 𝑡 is the join time of the test
implementation. A positive 𝑠𝑟𝑑 is equivalent to the 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 − 1,
and a negative 𝑠𝑟𝑑 to 1 − 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛.

4.2 Hash Directory Size Effect
The evaluation of the initial version of our 3D+Umbra hash join
can be seen in fig. 2a. This can be compared with the evaluation of
the 3D hash join in fig. 4 of [3].

Unfortunately, these initial results show little improvement over
the baseline.

A notable difference between the initial 3D+Umbra version and
the 3D version is the size of the hash table used. The original
3D hash join uses a hash directory size equal to the number of
unique keys, whereas the 3D+Umbra version uses a hash directory
size based on the number of the total tuples in the build relation.
This is because the first 3D+Umbra version did not include the
HyperLogLog unique key count logic described in section 3.3, and
thus had no way of determining the number of unique keys.

As the hash table size was the main difference from the better-
performing 3D Hash Join, we tested the 3D+Umbra version using
a hash directory size equal to the unique key count; a value we
only knew due to having designed the test cases. As this showed
promise, we implemented the HyperLogLog counters to estimate
the number of unique keys.

The value produced by HyperLogLog is an estimate and contains
some expected error. We found that a too-small hash directory
performed worse than a too-large hash directory. Thus, to be safe,
we inflate the estimated unique count by a constant of 1.5 to obtain
the hash directory size.

The updated version of 3D+Umbra using HyperLogLog key
count estimation and unique key-based hash directory size can
be seen in fig. 2b. This version performs much better than the orig-
inal version, despite the overhead of the distinct key estimation.

The fact that the directory size had a large effect on the perfor-
mance of the 3D+Umbra implementation leads naturally to the idea
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Figure 3: Regression for optimal hash directory size from the
number of unique keys and total tuples. The data points used
for regression are the smallest hash directory sizes with join
times within 5% of the best time for the same input relations.

that the chain hash table’s directory size may not be optimal either.
We investigate this in the next section.

4.3 Optimizing Hash Directory Length
Given that the size of the hash directory plays a pivotal role in the
performance of the 3D+Umbra Hash Join, it is worth reconsidering
the choice of hash table size for the standard Umbra-style chained
hash join. The baseline version uses a hash directory size equal to
the number of build tuples multiplied by a constant of 1.5. We ran
the following tests to find the optimal hash directory size.

4.3.1 Test setup. Weuse equal size build and probe relations, varied
in sizes between 215 and 225, increasing by multiples 4. The data
generation is similar to the design of the foreign key tests, with
the probe relations using unique keys and the build relation keys
taken from a subset of the probe relation key range. As opposed
to the previous tests, the number of unique key values in the build
relation was varied in the tests, between 2 and the number of total
keys. To achieve this, each key in the build relation was duplicated
𝑑 = 𝑡

𝑢 times, for 𝑢 the number of the unique keys, and 𝑡 the number
of total keys. In the cases where this was not an integer, the number
of duplicates was varied between ⌊𝑑⌋ and ⌈𝑑⌉ in proportion so that
on average the correct number of duplicates would be attained.

The hash directory size was also varied between the number of
unique keys and the number of total keys.

4.3.2 Modelling Hash Directory Size from Unique/Total keys. By
benchmarking joins for each combination of unique key count,
total key count, and hash directory size, we find the optimal hash
directory size for each total/unique key configuration.

We select the best hash directory size as the smallest hash direc-
tory with join performance within 5% of the fastest time for a given
total/unique key configuration. These points appeared to follow a
line in the log-log plot of hash directory size versus unique key;
though points with a unique key count less than 210 were noisy
and did not follow this trend. As these latter configurations seemed

less realistic, we removed them before running log-log regression.
This resulted in the relationship ℎ ∼ 0.4𝑢0.61𝑡0.45, for ℎ the hash
directory size and𝑢 and 𝑡 as defined above. This fits intuition as it is
nearly the geometric mean of the total and unique keys, multiplied
by a constant.

Using this fitted curve, we have a simple model to choose a suit-
able hash directory size. In practice, we use a much larger constant
of 1.5, and use an upper bound for the maximum hash directory
size of 1.5𝑡 . Results for the standard chained hash table join using
this hash directory sizing model can be seen in fig. 2c. Though it
does not perform as well as the 3D+Umbra Hash Join, given its
simplicity, it is worth considering in a hash join implementation.

We used a similar analysis to find the optimal hash directory size
for the 3D+Umbra hash join, but found that using a size based on
the number of unique keys, as in [3], did indeed perform the best.

4.4 Effects of Hash Table Collisions
Hash tables are widely used as the expected runtime of their insert
and lookup operations is 𝑂 (1). Unfortunately, their worst-case per-
formance is 𝑂 (𝑛), as resolving hash collisions requires inspecting
multiple keys.

Though 64-bit hash functions do have collisions, there are rare
enough that they can often be ignored. But a 64-bit hash must map
to a location in the hash directory, which must be small enough
to fit well in memory and caches. A variety of mapping functions
are used, as described in section 2.1.1, but all result in hash bucket
collisions.

Separate chaining and open addressing are two techniques used
to handle such collisions; both Umbra and 3D use the former tech-
nique. Separate chaining tables are easier to build in parallel, and
unlike open addressing tables, allow different-sized values may be
held directly in the hash table [5]. Despite the benefits of chained
hash tables, resolving collisions is expensive as it requires traversal
of linked lists; this entails dereferences and the associated random-
access reads.

The issues of collisions are exacerbated by duplicate keys. These
increase the length of collision lists, and unlike collisions, there is
no way to reduce the number of duplicates.

4.4.1 Optimizing costs due to hash collisions. There are three as-
pects of the 3D+Umbra algorithm which control the costs of hash
collisions. These are 1) the 3D structure, 2) Bloom filter pointer tags,
and 3) the size of the hash directory.

The 3D Hash table algorithm can be seen as a method to reduce
the cost of hash collisions. As mentioned previously, if a slot has
only one key with many duplicate tuples, the tuples must be tra-
versed when output. In this case, the 3D algorithm does not reduce
the amount of required iteration. 3D becomes beneficial when mul-
tiple keys with duplicates collide in the same slot. In this case, the
3D algorithm avoids iteration over tuples with keys different from
the current probe key.

Umbra’s Bloom filters also reduce the cost of hash collisions. The
Bloom filters allow the probe algorithm to avoid traversing the
collision list when the key is not present in the Bloom filter. If the
key is present, whether in actuality or due to a false positive, the
collision list must be traversed in search of matching nodes. If the
collision list is traversed and keys have duplicates, unlike the 3D
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algorithm, Umbra must iterate through each of the duplicate nodes.
But in many cases the Bloom filters allow collision list traversal to
be avoided entirely.

The size of the hash directory also affects the costs of collisions by
reducing the number of collisions. Assuming there are no collisions
of the underlying hash function, the expected number of unique
keys per non-empty hash bucket is 𝑛

𝑚 · (1−(1−1/𝑚)𝑛 ) where m is the
size of the hash directory, and n is the number of unique keys [3].
By increasing the size of the hash directory, the expected number
of unique keys per non-empty bucket can be made arbitrarily close
to 1. Though increasing the hash directory size reduces collision, it
comes at the cost of using additional memory. As the hash directory
is accessed with a random access pattern, minimizing its size to
promote good caching is pivotal.

We can see the effects of each of these factors in fig. 4. Here we
see a comparison of the performance of joins while varying each
of the above three factors. The probe relation size is held constant
at 225, while build relation size is varied between 210 and 225. The
baseline configuration is the Umbra-style chained hash join with
Bloom filters and hash directory size based on the total number of
tuples.

Several aspects of the plot are of note. First, all configurations
without Bloom filters perform notably worse than the same config-
uration with a Bloom filter. Despite this, the 3D versions without
Bloom filters perform fairly well at high build relation sizes. The
3D version with hash directory size based on the number of total
keys has similar performance to the baseline at low build relation
sizes but drops in performance at high build sizes. The best version
is the 3D algorithm with Bloom filters and directory size based on
the number of unique keys, though the chained version with Bloom
filters and unique key-based hash directory size performs decently
as well.
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Figure 4: Comparison of three factors affecting join perfor-
mances. Probe relation size is 225 and t-scale parameter is 8
(256 maximum expected duplicates).

5 RELATEDWORKS
This works rests on the significant existing work on hash tables
and hash joins. We have previously discussed this is based on: the

3D Hash Table Join [3], and the morsel-drive parallelism of Umbra
[5].

This work assumes that joins are small enough to avoid the need
for partitioning. Bandle et al. discuss when to use radix partitioning
in Umbra [2]; a real system employing the work in this paper would
likely use radix partitioning for large joins.

We discussed above the optimal hash directory size relative to
the number of unique and total keys. This closely relates to the
notion of load factor in hash tables. Load factor is one of several
factors affecting the performance of Hash Joins analyzed by Richter
et al [8]. They also consider other types of hash tables, in particular
open addressing tables using various probing schemes.

6 CONCLUSION
In this paper, we investigated techniques for handling duplicate
keys in hash joins. Specifically, we looked at the marriage of two
existing algorithms: the 3D Hash table joins of Flachs et al [3], and
the parallel hash join implementation of Umbra [2, 5].

We evaluated a hash join combining these algorithms and found
that the 3D structure, Bloom filter pointer tags, and an increased
hash directory size have a similar effect of reducing the cost of
duplicates and collisions. Since the combination of 3D structure
and Bloom filters reduced this collision cost significantly, we found
we could decrease the hash directory size to around the number
of unique keys, without significantly adversely affecting the cost
of collisions/duplicates. This decrease in hash directory size im-
proves the algorithm’s speed, likely due to improved cache usage.
To size the hash directory based on the number of unique keys we
added a HyperLogLog sketch to estimate this value during tuple
materialization.

Additionally, we found that reducing the hash directory size
to a function of both the unique and total key sizes improves the
performance of the chained hash join. We found a suitable function
by regressing the relationship between unique keys, total keys, and
the best directory size per join configuration.

Our final results are two algorithms—Umbra+3D, and an Umbra
join with unique key-based directory size—both of which help
mitigate the negative effects of duplicates in hash joins.

REFERENCES
[1] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu. 2013. Multi-

core, main-memory joins: Sort vs. hash revisited. Proceedings of the VLDB Endow-
ment 7, 1 (2013), 85–96.

[2] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That is the Join Question in a Real System. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June 18–27,
2021, Virtual Event , China.

[3] Daniel Flachs, Magnus Müller, and Guido Moerkotte. 2022. The 3D Hash Join:
Building On Non-Unique Join Attributes. In 12th Annual Conference on Innovative
Data Systems Research (CIDR ’22), January 9–12, 2022, Chaminade, USA.

[4] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm. In
Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics and
Theoretical Computer Science, 137–156.

[5] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

[6] Daniel Lemire. 2016. A fast alternative to the modulo reduction. https://lemire.me/
blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/. Accessed: 2023-02-
01.

[7] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System with
In-Memory Performance.. In CIDR.

https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/


[8] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A seven-dimensional
analysis of hashing methods and its implications on query processing. PVLDB 9,

3 (2015), 96–107.


	Abstract
	1 Introduction
	2 Background
	2.1 Umbra Hash Join
	2.2 Duplicates in Hash Joins
	2.3 3D Hash Join

	3 Combining Umbra & 3D
	3.1 Hash Directory & Node Structure
	3.2 Insertion Algorithm
	3.3 Counting Unique Keys

	4 Evaluation
	4.1 Experiment Structure
	4.2 Hash Directory Size Effect
	4.3 Optimizing Hash Directory Length
	4.4 Effects of Hash Table Collisions

	5 Related Works
	6 Conclusion
	References

